【Abstract】We study stochastic periodic-review inventory systems with lost sales, where the decision maker has no access to the true demand distribution a priori and can only observe historical sales data (referred to as censored demand) and feature information about the demand. In an inventory system, excess demand is unobservable because of inventory constraints, and sales data alone cannot fully recover the true demand. Meanwhile, feature information about the demand is abundant to assist inventory decisions. We incorporate features for inventory systems with censored demand. Methodology/results: We propose two feature-based inventory algorithms called the feature-based adaptive inventory algorithm and the dynamic shrinkage algorithm. Both algorithms are based on the stochastic gradient descent method. We measure the performance of the proposed algorithms through the average expected regret in finite periods: that is, the difference between the cost of our algorithms and that of a clairvoyant optimal policy with access to information, which is acting optimally. We show that the average expected cost incurred under both algorithms converges to the clairvoyant optimal cost at the rate of 𝑂(log 𝑇/𝑇) for the perishable inventory case and 𝑂(1/√𝑇)