Wang, Jianwei, Ying Zhang, Kai Wang, Xuemin Lin, and Wenjie Zhang. "Missing Data Imputation with Uncertainty-Driven Network." Proceedings of the ACM on Management of Data 2, no. 3 (2024): 1-25.
2024年10月28日

【Abstract】  We study the problem of missing data imputation, which is a fundamental task in the area of data quality that aims to impute the missing data to achieve the completeness of datasets. Though the recent distribution-modeling-based techniques (e.g., distribution generation and distribution matching) can achieve state-of-the-art performance in terms of imputation accuracy, we notice that (1) they deploy a sophisticated deep learning model that tends to be overfitting for missing data imputation; (2) they directly rely on a global data distribution while overlooking the local information.