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A B S T R A C T   

It is widely accepted that R&D investment improves technological progress. The R&D capital that boosts a firm's 
production efficiency has various sources. This paper uses “effective” R&D capital, which represents not only a 
firm's internal R&D input but also the benefit derived from R&D collaboration and accessible knowledge capital, 
to empirically examine its effects on a firm's productivity. Accounting for technological distance and the 
endogeneity problem of weights matrices, we use spatial panel data models to estimate the return of R&D capital 
within the framework of the production function. We estimate the production function using the firm-year data 
of Shanghai technological enterprises from 2009 to 2017. The results show positive, significant relationships 
between each element of “effective” R&D capital and total-factor productivity (TFP). Knowledge spillovers have 
greater impacts on a firm's TFP than its internal R&D input and R&D collaboration. The contribution of R&D 
collaboration to TFP is less than that of internal R&D, indicating that R&D collaboration is not fully internalized. 
The results imply that a better environment for R&D collaboration and technology exchange is needed.   

1. Introduction 

Technological progress plays a crucial role in economic growth 
(Solow, 1956). R&D activities are regarded as an important driving 
factor of a firm's technological progress, and the effect of R&D invest-
ment on productivity has been extensively discussed (Minasian, 1969; 
Griliches and Mairesse, 1983; Hall and Mairesse, 1995; Bloom et al., 
2013). Most studies show a positive relationship between R&D activities 
and productivity growth. An important question is how to measure R&D 
capital (Griliches, 1979). A firm's own R&D investment is not the only 
source of corporate productivity improvement. Existing research shows 
that problems such as patent protection and the uncertainty of innova-
tion output make it difficult for companies to fully internalize their R&D 
investment. To achieve higher innovation performance, firms seek 
external resources. On the one hand, an increasing number of companies 
are pursuing “open innovation” (Chesbrough, 2003) and regard R&D 
cooperation as an important complement to internal R&D input (Becker 
and Dietz, 2004). On the other hand, due to the public good nature of 
knowledge, the research results of one firm can be shared by other firms 
without compensation, which is known as the knowledge spillovers. 
Because of the growing complexity and risk of innovative processes in 
the modern economy, firms seek to collaborate in R&D activities for 

various reasons (Hagedoorn, 2002). First, cooperative R&D activities are 
cost-saving since they increase a firm's R&D input by enabling it to 
leverage its knowledge pool with other firms' contributions and thus 
achieve a certain innovative output with fewer research efforts. Second, 
it reduces the degree of uncertainty and risk in innovative processes 
because of the reduction in internal R&D expenditure. Bloom et al. 
(2007) investigated the dynamics of R&D and uncertainty regarding 
future productivity and economic conditions and found that the effect of 
uncertainty depends on the level of R&D. The effect is negative when 
firms increase their R&D, but if firms reduce their R&D, then the effect 
can be positive. Third, firms engaged in R&D cooperation can benefit 
from economies of scale in innovation production and increase effi-
ciency by the complementarities of R&D factors and by avoiding repe-
tition. Colombo (1995) demonstrated the complementary relationship 
between firm cooperation and R&D intensity. Veugelers (1998) noted 
that firms choose to cooperate with others in research and development 
based on motivations such as opening up new markets, mastering new 
technologies, achieving economies of scale, and sharing costs and risks. 
R&D cooperation affects innovation output by affecting the “effective” 
level of R&D capital (Katz, 1986). Ahuja et al. (2008) summarized a 
firm's effective R&D level as: 

R&DEFF = R&DINT + θR&DCOLLAB, (1.1) 
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where θ is interpreted as the degree that a unit of R&D collaboration is 
equivalent to a unit of internal R&D. Ahuja et al. (2008) argued that in 
(1.1), 0 < θ < 1. This is because of the coordination and management 
costs in R&D collaboration, as well as the problem of information 
asymmetry, leading to R&D collaboration, may not contribute entirely 
to the effective R&D capital. It is also possible that θ > 1, which indicates 
that R&D collaboration is more efficient than internal R&D. Therefore, if 
in-house and cooperative R&D activities are not distinguished, which is 
equivalent to the case that θ = 1, it may lead to underestimation or 
overestimation of the contribution of the effective R&D capital to TFP. 

Another problem is that because the amount of R&D collaboration of 
firms is often unobservable in the data, in many studies only regions' or 
firms' internal R&D expenditures are in the specification of the empirical 
model, which is equivalent to the case that θ = 0. However, the impact of 
R&D collaboration cannot be ignored, especially in the case where there 
is a high proportion of R&D collaboration. Using balanced panel data of 
1018 Shanghai technology companies from 2009 to 2017, we find that 
the proportion of companies whose R&D collaborations accounted for 
>15 % of the total R&D expenditure was 10 % to 30 % (see Fig. 3). 
Ignoring the contribution of R&D collaborations to TFP will lead to 
omitted variable bias because R&D collaboration has a positive influ-
ence on internal R&D and internal R&D can also stimulate the proba-
bility and the incidence of R&D collaboration (Becker and Dietz, 2004). 

Knowledge transfer occurs not only through formal R&D collabora-
tion but also through informal and uncompensated leakages. Unlike 
cooperative R&D activities, knowledge spillover refers to unintentional 
knowledge flow (Ibrahim et al., 2009). Knowledge externalities or 
spillovers are “the effects of nonmarket interactions which are realized 
through processes directly affecting the utility of an individual or the 
production function of a firm” (Fujita and Thisse, 1996). Fischer et al. 
(2009) defined knowledge spillovers as “the benefits of knowledge to 
firms, industries, or regions not responsible for the original investment 
in the creation of this knowledge”. Because of the public good nature of 
knowledge, the related research of other firms adds additional knowl-
edge to the knowledge pool and, therefore, can reduce a firm's needed 
R&D input to achieve certain output. However, for a relatively long 
time, the influence of external knowledge capital stock on a firm's output 
drew little attention since knowledge leakages are assumed away in 
traditional economic growth theory. The ignorance of spatial depen-
dence among economic units might lead to unreliable statistical in-
ferences (Ho et al., 2018). Eberhardt et al. (2013) indicated that 
spillovers are not separable from a firm's own R&D, even if the exclusive 
interest lies in the impact of R&D on TFP. Most empirical evidence has 
been shown with respect to the impact of knowledge spillovers on 
innovation or productivity across regions or countries through trade or 
geographic proximity (Coe and Helpman, 1995; Peri, 2005; Madsen, 
2007; Fischer et al., 2009; Sun et al., 2021a,b). Coe and Helpman (1995) 
indicated that the growth of a country's productivity depends not only 
on its own R&D capital stock but also on the R&D capital stock of its 
trade partners. Fischer et al. (2009) investigated the impact of knowl-
edge capital on a firm's TFP through cross-regional knowledge spillovers 
and found that the output elasticity of inter-regional spillovers is 0.12. In 
this work, knowledge diffusion decay with geographic distance is 
characterized by an exponential specification of weights. Sun et al. 
(2021a,b) observed positive impacts on energy efficiency resulting from 
both domestic knowledge stocks and international knowledge spillovers, 
accounting for geographical distance. Sun et al. (2021a,b) found 
empirical evidence of cross-country spatial dependence of institutional 
quality and energy efficiency. There is also evidence show positive 
relationship between knowledge spillovers and firm or industry TFP 
(Branstetter, 2001; Tsai and Wang, 2004; Higon, 2007). 

In addition to the above-mentioned geographic proximity and trade 
channels, another proven mechanism of knowledge spillovers is tech-
nological proximity. For example, the interaction between high-tech 
clusters in Beijing and Shanghai is more likely to involve 

technological proximity than geographical proximity. LeSage and 
Fischer (2012) gave a concrete example of a skilled worker moving to 
another region as one way that knowledge spillovers take place. The 
movement of labor can lead to this externality (Moretti, 2004, 2021). 
This kind of knowledge transfer is more likely to be caused by techno-
logical proximity than by geographic proximity because workers tend to 
find jobs that match their skills. Empirical evidence also suggests that 
spillovers in the technological dimension are greater than those in the 
geographic dimension (LeSage and Fischer, 2012). Griliches (1979) gave 
several alternatives for measuring technological distance and empha-
sized the data limitations of very refined approaches. Jaffe (1986) pre-
sented a simple method to calculate technological similarity, 
characterizing a firm's technological position by patent vectors P = (P1, 
…,PK) in a K-dimensional technology space, where Pi, i=1, …K denotes 
the number of patents in ith technological area. Therefore, the measure 
of technological proximity can be given by the correlation coefficients 
between two firms' patent vectors. The potential external knowledge 
pool is calculated by the weighted sum of other firms' knowledge capital, 
where the weights are correlation coefficients between 0 and 1. The 
smaller the correlation coefficients, the more difficult it is for the firm to 
benefit from the knowledge of other firms. Bloom et al. (2013) used this 
method to construct the weight matrix and found a positive relationship 
between technological spillovers and firm output. LeSage and Fischer 
(2012) found that knowledge spillover through technological proximity 
has a larger magnitude of impact on TFP than geographical proximity. 

Although the current literature uses some alternatives to charac-
terize firms' pairwise technological distance, there are still some prob-
lems in empirical model specification and identification. One problem is 
using a single technological distance weight matrix to capture knowl-
edge spillover effects. However, the proximities of technology among 
firms can be time-varying. Technological distance might be time- 
varying not only because technology grows and changes quickly but 
also because firms adjust their research areas and R&D activities ac-
cording to corporate development strategies. Therefore, a time-invariant 
weight matrix fails to capture time-varying technological spillovers. 
Second, unlike geographic distance, which is usually exogenous, tech-
nological distance might be endogenous because a firm's technological 
development could influence its productivity, while the growth of pro-
ductivity might also change the structure of its R&D activities. In 
addition, some unobserved characteristics, such as the quality of em-
ployees, are related to technological proximity and will affect outcomes. 
To address this, the current paper attempts to allow time-varying tech-
nological weights matrices while accounting for endogenous weights 
matrices. 

The objective of this paper is to assess the contribution to the pro-
ductivity of each element of “effective” R&D capital. More specifically, 
this paper takes both internal R&D input and knowledge externalities 
into consideration and further adds R&D collaboration as a firm's 
effective R&D capital (Griliches, 1979; Katz, 1986; Ahuja et al., 2008). 
Our results are based on a sample of 1018 Shanghai technological en-
terprises between 2009 and 2017. The results show positive, significant 
relationships between each element of effective R&D capital and total- 
factor productivity. Knowledge spillovers have greater effects on a 
firm's TFP than its internal R&D input and R&D collaboration. The 
contribution of R&D collaboration to TFP is less than that of internal 
R&D, which indicates that R&D collaboration is not fully internalized. 
This paper contributes to the current literature in two ways. First, this 
paper uses the framework of “effective” R&D capital, to assess its impact 
on TFP. We decompose a firm's R&D capital into internal R&D and R&D 
collaboration, and find a relatively large difference in their contribution 
to TFP, while the existing literature investigating the effect of R&D 
capital on corporate productivity does not distinguish between internal 
R&D capital and cooperative R&D capital. Second, we use spatial 
econometric models with time-varying endogenous weights matrices to 
estimate the production function. The spatial dynamic panel model 
better mitigates the problem of omitted variables, and we also take into 
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account the endogeneity of the spatial weights matrices following Qu 
and Lee (2015) and Qu et al. (2017), resulting in more accurate 
estimates. 

There are two main motivations behind this research. First, it is 
important to construct a firm's effective R&D capital stocks and evaluate 
its contribution to productivity. Assessing the contribution of each of its 
elements to TFP helps to inform the innovation decision-making of firms 
and government innovation policy. Second, it is important to alleviate 
the problem of omitted variables and the endogeneity of weights 
matrices to obtain more accurate estimations. 

The remainder of this article is organized as follows. In Section 2, we 
build the theoretical framework. In Section 3 we discuss the models. 
Section 4 presents the data and variables. Empirical results and 
robustness checks are presented in Sections 5 and 6, respectively. We 
conclude the article in Section 7. 

2. Theoretical framework 

2.1. Internal R&D 

R&D activities directly contribute to the accumulation of knowledge, 
which is an important source of technological progress and economic 
growth. Among developed countries, countries with higher levels of 
R&D investment and innovation have significantly higher economic 
growth rates than other countries (Samimi and Alerasoul, 2009). The 
contribution of a firm's own R&D investment to productivity has been 
extensively examined. Most empirical studies have found a positive 
relationship between internal R&D investment and productivity (Nadiri, 
1993; Griffith et al., 2004; Higon, 2007). Higon (2007) reviewed the 
existing literature and concluded that the output elasticity of R&D to 
TFP is between 0.015 and 0.37. For example, Nadiri (1993) estimated 
that the output elasticity of R&D input to TFP is between 0.1 and 0.3. 
Although most studies have confirmed the contribution of R&D to pro-
ductivity improvement, there are still situations in which R&D invest-
ment does not result in high productivity (Ejermo et al., 2011; Yu et al., 
2021), which is known as the Swedish paradox, and some of which have 
not been clearly demonstrated. Existing literature also points out that 
the impact of R&D activities on a firm's productivity varies significantly 
depending on the type of industry. Griliches and Mairesse (1983) and 
Cuneo and Mairesse (1983) found that the output elasticity of R&D on 
scientific firms is significantly greater than on nonscientific firms. Tsai 
and Wang (2004) also found that the R&D output elasticity of high-tech 
enterprises is significantly greater than that of other types of enterprise. 
Although the impact of R&D investment on TFP is still debated, it is 
reasonable to assume that R&D directly stimulates productivity growth 
(Griffith et al., 2003). In line with prior findings, we propose the 
following hypothesis: 

H1. A firm's internal R&D investment has a positive impact on its 
productivity. 

2.2. R&D collaboration 

The growing complexity and risk of innovative processes stimulates 
R&D collaborations through which firms acquire resources that are not 
available in-house (Miotti and Sachwald, 2003). Although there is not 
much research investigating the impact of R&D collaboration on total- 
factor productivity, there is evidence showing that R&D collaboration 
promotes the firm's innovation, including innovation input and inno-
vation output. Czarnitzki et al. (2007) found that in Germany, R&D 
subsidies to individuals have no significant effect on R&D input and 
patent output, while incentives for collaboration can improve innova-
tion performance. Becker and Dietz (2004) identified the significant 
positive effect of joint R&D on both innovative input and output, as 
measured by internal R&D intensity and the realization of product 
innovation. Belderbos et al. (2004) analyzed the influence of different 

types of partner and found that cooperation with competitors and sup-
pliers can improve the productivity, while cooperation with competitors 
and universities can improve the revenue. However, R&D collaboration 
also has potential risks, one of which is free-riding (Veugelers and 
Kesteloot, 1994), which causes R&D investment to be lower than 
optimal (Katz, 1986). It is possible that the company only allocates 
relatively inefficient researchers to the cooperative R&D activities, 
making R&D cooperation not as efficient as internal R&D (Contractor 
et al., 1988). In addition, cross-organizational cooperation requires 
additional coordination, monitoring, and management costs (Harrigan, 
1988; Mitchell and Singh, 1996). Therefore, part of these R&D resources 
will be allocated to cross-organization coordination tasks, reducing the 
actual R&D resources used for innovation. Therefore, we propose the 
following hypothesis: 

H2. R&D collaboration has a positive impact on firm productivity and 
its contribution is less than that of internal R&D. 

2.3. Knowledge spillovers 

Griliches (1979) investigated the contribution of R&D capital to 
productivity growth and discussed the measurement of the stock of R&D 
capital. One firm's level of productivity depends not only on its own R&D 
efforts but also on the effect of “outside” knowledge capital. Most evi-
dence has been shown with respect to the impact of knowledge spill-
overs on innovation or productivity across regions or countries (Coe and 
Helpman, 1995; Coe et al., 1997; Lumenga-Neso et al., 2005; Peri, 2005; 
Madsen, 2007; Fischer et al., 2009; Barasa et al., 2019; Sun et al., 2021a, 
b; Razzaq et al., 2021). For example, Fischer et al. (2009) used a spatial 
error model on a panel of 203 NUTS-2 areas and found that the elasticity 
of knowledge spillover to regions' TFP is 0.12. Madsen (2007) found that 
one of the important drivers of TFP convergence in OECD countries is 
technology spillovers between countries. Knowledge spillovers between 
firms or industries also have a positive impacts (Tsai and Wang, 2004; 
Moretti, 2004; Higon, 2007). Tsai and Wang (2004) used a panel of 
Taiwanese high-tech and traditional manufacturing firms and showed 
that the knowledge spillovers from the high-tech sector have a positive 
impact on the productivity of the traditional manufacturing sector. 
However, the flow of knowledge may also have a negative impact due to 
the competitive effect between firms (Branstetter, 2001; Higon, 2007; 
Zhang et al., 2021). The total effect of knowledge spillovers depends on 
which of the positive and negative effects is greater. Based on the above 
findings, it is reasonable to assume that positive effects may dominate 
and we formulate the following hypothesis: 

H3. Knowledge spillovers have positive impacts on firm productivity. 
Fig. 1 presents the theoretical framework of this article. We will 

empirically examine the relationship between each element of effective 
R&D capital and total-factor productivity. 

3. Models 

One approach to quantifying the return of R&D capital to total-factor 
productivity is the knowledge capital model introduced by Griliches 
(1979). We augment it so that the measurement of the stock of R&D 
capital includes not only the firm's own R&D efforts but also cooperative 
R&D capital and knowledge externalities. Following Griliches (1979), 
we assume a Cobb-Douglas production function: 

Yit = ACα
itL

β
itRDIγ1

it RDCγ2
it Kγ3

it evit , (3.1)  

where Yit is some kind of output of firm i at time t, such as revenue; RDit
I 

it represents the stock of internal R&D expenditures; RDit
C represents the 

stock of cooperative R&D benefit; Kit represents the accessible knowl-
edge pool; Cit represents the stock of physical capital; and Lit represents 
the stock of labor. A is a constant. Then, total-factor productivity is 
defined as follows: 
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Fit =
Yit

Cα
itL

β
it
= ARDIγ1

it RDCγ2
it Kγ3

it evit . (3.2) 

We take the logarithm of both sides of (3.2) to obtain the following 
model and use lowercase to represent the variable after taking the 
logarithm: 

fit = a+ γ1rdI
it + γ2rdC

it + γ3kit + vit. (3.3) 

Rewrite (3.3) in vector form: 

fnt = a+ γ1rdI
nt + γ2rdC

nt + γ3knt + vnt, (3.4)  

where fnt, rdnt
I , rdnt

C , a and vnt are n × 1 vectors. Following LeSage and 
Fischer (2012), we take the spatial dependence of productivity into 
account and rewrite the accessible knowledge pool as Wntknt: 

fnt = λ1Wntfnt + γ1rdI
nt + γ2rdC

nt + γ3Wntknt + xntβ+ cn + αtln + vnt, (3.5)  

where Wnt is the spatial weight matrix; cn is the individual fixed effect; 
αtln represents the time fixed effect, where αt is a scalar and ln is an n- 
dimensional vector with all elements being 1; xnt is an n × kx matrix of 
control variables. If we consider the dynamic adjustment of productiv-
ity, then we specify a spatial dynamic panel data (SDPD) model: 

fnt = λ1Wntfnt + ρfn,t− 1 + λ2Wn,t− 1fn,t− 1 + γ1rdI
nt + γ2rdC

nt + γ3Wntknt + xntβ 
+ cn +αtln + vnt. (3.6) 

In spatial econometrics, spatial weights matrices are used to repre-
sent spatial dependence between economic units. Based on the knowl-
edge capital stock or the technological position of each firm, there are 
various ways to calculate the technical proximity between firms (Jaffe, 
1986; Rosenkopf and Almeida, 2003; Gilsing et al., 2008). In this article, 
we follow Jaffe (1986), classifying firm i's patent into m categories and 
constructing firm i's patent vectors Pi, t = (pik, t)k=1, …, m, where pik, t 
denotes the number of patents in category k. The patent vectors are 
eight-dimensional if the International Patent Classification (IPC) sec-
tion1 is used as the classification method (Parent and LeSage, 2008). 
Based on these patent vectors, we construct the spatial lag weights 
matrices Wnt = (wij, t)i, j=1, …, n, where the (i, j)th entry is the correlation 
coefficient of firm i's and firm j's patent vectors: 

wij,t =

∑m

k=1

(
pik,t − pi,t

)(
pjk,t − pj,t

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

k=1

(
pik,t − pi,t

)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑m

k=1

(
pjk,t − pj,t

)2
√ , (3.7)  

wij, t is closer to unity if their technological types are more similar. Wnt is 
row-normalized and has zero diagonals. Therefore, each element in 

Wntknt represents the potential external knowledge pool accessible to the 
corresponding firm. 

Since the weights are constructed based on the number of patents in 
different classifications, they can be time-varying and highly correlated 
with the unobservable disturbance vnt that may affect productivity. 
Following Qu and Lee (2015) and Qu et al. (2017), we employ a control 
function approach to overcome the endogeneity problem. We allow the 
endogeneity of spatial weights matrices by the following equation: 

pnt = Γ1rdI
nt +Γ2rdO

nt +Γ3govnt +Γ4rlnt + cn2 + αt2ln + ϵnt − unt, (3.8)  

where pnt is an n × 1 vector, which represents the number of patents 
granted; rdnt

I represents the internal R&D investment; rdnt
O represents 

entrusted R&D investment to cooperative firms; govnt represents R&D 
subsidies from the government; and rlnt represents employees engaged in 
R&D activities. unt is a one-sided term that captures inefficiency in the 
innovation process, and ϵnt is the specification error. To overcome the 
potential endogeneity problems that exist in some previous studies, the 
estimating equations are specified as follows: 

fnt =λ1Wntfnt+γ1rdI
nt+γ2rdC

nt+γ3Wntknt+xntβ+cn+αtln+δ1 ϵ̂nt+δ2 ûnt+ξnt,

(3.9)  

fnt = λ1Wntfnt + ρfn,t− 1 + λ2Wn,t− 1fn,t− 1 + γ1rdI
nt + γ2rdC

nt + γ3Wntknt + xntβ 
+ cn + αtln + δ1 ϵ̂nt + δ2 ûnt + ξnt. (3.10) 

If δ1 ∕= 0 or δ2 ∕= 0, Wnt is endogenous. ξnt is independent with ̂ϵnt and 
ûnt . The decomposition of the error term in the control function helps to 
specify the source of endogeneity. 

In a nonspatial setting, the estimates of regression present the mar-
ginal effect of explanatory variables. However, in the spatial depen-
dence setting, the marginal impacts involving weights matrices are more 
complex (LeSage and Pace, 2007). For instance, in spatial panel data 
model (SPD), take partial derivatives with respect to Wntknt: 

∂fnt

∂Wntknt
= γ3(I − λ1Wnt)

− 1
, (3.11)  

which is the impact matrix associated with the knowledge capital of 
neighbors. The marginal impact is also time-varying. The average total 
effects on productivity are given by: 

Et,total =
1′

γ3(I − λ1Wnt)
− 11

n
. (3.12)  

4. Data and variables 

To better understand the development status of Shanghai's science 
and technology firms, the Science and Technology Commission of 
Shanghai Municipality (STCSM) has been conducting a yearly sample 
survey since 2008. The survey includes firms' information such as 

Fig. 1. Theoretical framework.  

1 The codes are A–H (see Table 7). 
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revenues, taxation, profit, trade, innovation, R&D investment, 
personnel, etc. In this paper, we use a balanced panel of 9162 obser-
vations for the period between 2009 and 2017 constructed from the 
yearly sample survey. Because the surveys only include the total number 
of patents, without the classification of patents that is required in our 
study for measuring the technological proximity of firms, we retrieved 
the IPC classification of the patents from the incoPat database, which is a 
patent database that provides a global collection of patent information. 
We calculated the number of patents in each IPC classification and 
matched these two databases according to firms' names and constructed 
the firms' patent vectors. The summary statistics are reported in Table 1. 

The general method of calculating TFP is using a fixed effect model to 
estimate the Solow surplus, but this approach fails to take into account 
the endogeneity problem caused by the correlation between unobserv-
able productivity shocks and production factor inputs. The resulting 
endogeneity might lead to estimation bias. Olley and Pakes (1996) first 
proposed a two-step estimation method to overcome endogeneity and 
used firms' current investment as a proxy for unobservable productivity 
shocks. A similar approach is the LP method (Levinsohn and Petrin, 
2003), which is more flexible in choosing proxy variables. This paper 
uses total revenue as output and uses total assets and labor as input. 
Fixed asset investment for scientific research is used as the proxy vari-
able. RDI represents the stock of internal R&D. RDC represents the stock 
of cooperative R&D, which includes two components: entrusted R&D 
investments to cooperative firms and R&D service revenues. K is the 
stock of patents granted. Although there are useful technological in-
ventions that are not patentable, and thus will be missed, those that are 
patented must meet minimum standards of novelty, originality, and 
potential use (Ho et al., 2018). To construct effective R&D capital stocks, 
the depreciation of R&D investment and patents granted need to be 
taken into account. We use the perpetual inventory approach to calcu-
late R&D capital stocks: 

RDI
t+1 = RDI

t (1 − r)+ I1,t+1, (4.1)  

RDC
t+1 = RDC

t (1 − r)+ I2,t+1, (4.2)  

Kt+1 = Kt(1 − r)+ I3,t+1, (4.3)  

where r is an exogenously given depreciation rate and we use a constant 
depreciation rate of 10 %. I1, t+1, I2, t+1 and I3, t+1 are the internal R&D 
expenditures, R&D collaboration amount and patents granted during t 
+ 1. 

This article selects trade openness, education level, and government 
R&D subsidies as control variables. Trade can promote the accumulation 
of knowledge capital, and empirical studies show that there is a stable 
relationship between TFP and knowledge imports. In the past century, 
93 % of TFP growth was due to knowledge imports and the import of 
knowledge also explains the convergence of TFP in OECD countries 
(Madsen, 2007). We use the total amount of foreign exchange earned 
from exports to represent the degree of trade openness of firms. Pro-
ductivity is also affected by the level of individual education, which is 
correlated with R&D input in a firm. Moretti (2004) found that plants 
with a higher proportion of college graduates have a higher level of 
productivity. We use the proportion of employees with a bachelor's 
degree to represent the education level of a firm. Government R&D 
subsidies are also an important source of innovation input for firms, 
which affects productivity non-linearly (Bernini et al., 2017). This 
article uses the amount of government R&D subsidies to represent the 
R&D support from government. 

5. Results 

5.1. Moran's I test 

Before a spatial econometric model is specified, the spatial correla-

tion between economic units is usually tested. To test whether there is a 
spatial correlation of firms' productivity, the global Moran's I index is 
used to measure the degree of spatial dependence: 

I =

∑n

i=1

∑n

j=1
wij(fi − f )

(
fj − f

)

s2
∑n

i=1

∑n

j=1
wij

. (5.1)  

where I ranges from − 1 to 1. f is the mean of f, and s2 is the variance of f. 
wij is an element of the technological distance weight matrix. The null 
hypothesis of Moran's I test is that economic units are randomly 
distributed and have no interdependence. The alternative hypothesis is 
that economic units are interdependent. The closer the value of I is to 
unity, the stronger the positive spatial correlation, and vice versa. If I =
0, then there is no statistically significant evidence that the economic 
units are spatially dependent. 

Fig. 2 show Moran's I scatter plots for 2009 and 2017. It can be seen 
from the figure that there is a positive spatial correlation between the 
firms' TFPs, indicating that firms have a positive mutual influence on 
productivity, accounting for technological proximity. Therefore, spatial 
econometric models must be used. 

5.2. Spatial panel data models 

Table 2 presents the results of the spatial panel data model and 
spatial dynamic panel data model regressions with their standard de-
viations shown in parentheses2. Columns 1–4 use the TFP calculated by 
the OP approach as the dependent variable, and Columns 5–8 use the 
TFP calculated by the LP approach as the dependent variable. Columns 
1–2 and 5–6 are the results of the static spatial autoregressive model 
regression, and Columns 3–4 and 7–8 are the results of the spatial dy-
namic panel data model regression. 

λ1, λ2, and ρ are positive and significant, which confirms the 
importance of a spatial dynamic panel data model specification. In line 
with H1 and with Higon (2007) and Cuneo and Mairesse (1983), the 
impact of internal R&D stock on productivity ranges from 0.094 to 
0.123. It can be seen from the results that the omission of R&D collab-
oration will lead to inconsistent estimates of internal R&D and knowl-
edge spillovers, which overestimates the return to internal R&D. The 
coefficient of collaborative R&D is positive and significant at the 1 % 
level, ranging from 0.026 to 0.033. From the magnitude of the co-
efficients, we can see that the return of cooperative R&D is smaller than 
the return of internal R&D, which is consistent with H2. This result is in 
line with the view that a unit of R&D done outside the firm may 
contribute less to the firm's knowledge base than a comparable unit 
conducted inside the firm (Ahuja et al., 2008). The coefficient of W k is 
positive and significant, which supports H3. Note that the magnitude of 
the spillover effects is larger than that of both internal R&D and R&D 
collaboration. The coefficients of u and ϵ are significant, which implies 
the endogeneity of the weights matrices. In addition, as mentioned 
above, we should keep in mind that these estimates cannot be inter-
preted as the elasticities of TFP with respect to internal R&D, R&D 
collaboration, and knowledge spillovers, respectively. Table 3 shows the 
total effects of each component in effective R&D on TFP. 

For the static panel data model, a 10 % increase in the internal R&D, 
R&D collaboration and knowledge capital stocks of the technologically 
relevant neighbors would lead to 1.29 %, 0.36 %, and 1.76 % increases 
on average in a firm's TFP, respectively. For the dynamic panel data 
model, a 10 % increase in the internal R&D, R&D collaboration and 
knowledge capital stocks of the technologically relevant neighbors 
would lead to 1.37 %, 0.37 %, and 1.91 % increases on average in a 

2 The estimation methods are based on Zhang et al. (2021). Matlab codes are 
available from the second author. 
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firm's TFP, respectively, which are slightly higher than the estimates of 
the SPD. This result shows that the elasticity of TFP with respect to 
knowledge spillovers is the greatest, followed by internal R&D and R&D 
collaboration. The magnitudes of elasticities of knowledge spillovers 
and internal R&D are about 5 times and 4 times that of R&D collabo-
ration, respectively. 

6. Robustness checks 

6.1. Aggregation on patents 

Unlike geographical distance, technological distance is controversial 
and diverse. Benner and Waldfogel (2008) and Vom Stein et al. (2015) 
indicated that using the number of different types of patent each year to 
calculate technological distance might be imprecise because this 
calculation is based on a small number of patents. This problem can be 
mitigated by a larger sample size or coarser patent classification. 
Therefore, we follow Benner and Waldfogel (2008) in increasing the 

patent size by aggregating on years. We aggregate the number of patents 
every three years, and thus, the sample period changes from 2009–2017 
to 2011–2017. 

The results are presented in Table 4. Most estimates are consistent 
with the baseline regression, and thus, the conclusions presented in this 
study do not change. 

6.2. Lagged explanatory variables 

Considering the potential reverse causality between firms' produc-
tivity and effective R&D, we lag all explanatory variables by one period. 
The results are presented in Table 5. Most estimates are consistent with 
the baseline regression, proving the stability and reliability of the 
conclusion. 

6.3. Pooled regression on the full sample 

Since the sample is based on a balanced panel constructed from 

Table 1 
Descriptive statistics.  

Variables Descriptions Obs Mean SD Min Max 

OP TFP calculated by OP approach  9162  3.681  0.741  − 1.418  6.995 
LP TFP calculated by LP approach  9162  3.630  0.735  − 1.454  6.956 
RDI Internal R&D investment  9162  12,062  39,082  0  875,651 
RDC R&D collaboration amount  9162  1769  19,052  0  1,348,405 
K Patent granted  9162  4.975  14.48  0  460 
Gov Government R&D subsidies  9162  1012  10,440  0  478,576 
Edu Proportion of employees with bachelor degree or above  9162  0.456  0.277  0  1 
Open Total foreign exchange earned from exports  9162  8349  61,288  0  2,260,643 
RL Labors engaged in R&D  9162  74.224  154.87  0  3796 
RDO Entrusted R&D investment to cooperative firms  9162  605  6365  0  271,326 

Notes: Prices are for yuan in 2009 prices. 
RDI, RDC, Gov, Open and RDO in nominal values are deflated by CPI of Shanghai based on 2009. 

Fig. 2. Moran's I scatter plot of TFP in 2009 and 2017.  

Table 2 
Results: static and dynamic spatial panel data models.  

TFP OP LP 

Static Static Dynamic Dynamic Static Static Dynamic Dynamic 

λ1 0.138*** (0.020) 0.146*** (0.022) 0.059** (0.028) 0.082*** (0.027) 0.141*** (0.021) 0.139*** (0.020) 0.065** (0.028) 0.087*** (0.029) 
ρ   0.315*** (0.042) 0.306*** (0.040)   0.321*** (0.041) 0.309*** (0.041) 
λ2   0.083*** (0.008) 0.096*** (0.007)   0.081*** (0.010) 0.089*** (0.009) 
rdI 0.123*** (0.008) 0.120*** (0.008) 0.113*** (0.008) 0.094*** (0.008) 0.127*** (0.007) 0.122*** (0.008) 0.115*** (0.009) 0.096*** (0.009) 
rdC  0.033*** (0.003)  0.026*** (0.003)  0.032*** (0.002)  0.029*** (0.002) 
Wk 0.128*** (0.036) 0.164*** (0.040) 0.171*** (0.050) 0.132*** (0.049) 0.121*** (0.037) 0.167*** (0.035) 0.173*** (0.050) 0.138*** (0.050) 
u − 0.240*** 

(0.008) 
− 0.293*** 
(0.009) 

− 0.291*** 
(0.008) 

− 0.247*** 
(0.008) 

− 0.241*** 
(0.008) 

− 0.287*** 
(0.007) 

− 0.281*** 
(0.008) 

− 0.254*** 
(0.007) 

ϵ 0.330*** (0.041) 0.388*** (0.045) 0.375*** (0.042) 0.331*** (0.041) 0.312*** (0.039) 0.371*** (0.042) 0.324*** (0.042) 0.322*** (0.040) 
Controls Yes 
Firm FE Yes 
Time FE Yes 
Obs 9162 

The standard deviations of the estimated values are reported in parentheses. 
***, **, and * indicate significance at 1%, 5%, and 10%, respectively. 
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sample surveys of Shanghai technology firms, other observations are 
inevitably dropped. The advantage of using a balanced panel is that we 
can construct effective R&D capital stocks through the perpetual in-
ventory method based on firms' R&D input each year, and we can con-
trol for individual fixed effects. However, the entry and exit of 

enterprises might influence the results. To test how this might affect the 
results, we consider a pooled regression on the full-sample. 

The results are presented in Table 6. The direction and significance of 
the coefficients are still consistent with the baseline regression, indi-
cating that the main conclusions are robust. 

Table 3 
Results: total effects.  

SPD 2009 2010 2011 2012 2013 2014 2015 2016 2017 Mean 

rdI 0.129*** 
(0.009) 

0.129*** 
(0.009) 

0.130*** 
(0.009) 

0.130*** 
(0.009) 

0.130*** 
(0.009) 

0.130*** 
(0.009) 

0.129*** 
(0.009) 

0.129*** 
(0.009) 

0.129*** 
(0.009)  

0.129 

rdC 0.036*** 
(0.003) 

0.036*** 
(0.003) 

0.036*** 
(0.003) 

0.036*** 
(0.003) 

0.036*** 
(0.003) 

0.036*** 
(0.003) 

0.036*** 
(0.003) 

0.036*** 
(0.003) 

0.036*** 
(0.003)  

0.036 

Wk 0.175*** 
(0.043) 

0.176*** 
(0.043) 

0.177*** 
(0.043) 

0.177*** 
(0.043) 

0.177*** 
(0.043) 

0.177*** 
(0.043) 

0.176*** 
(0.043) 

0.176*** 
(0.043) 

0.175*** 
(0.043)  

0.176   

SDPD 2009 2010 2011 2012 2013 2014 2015 2016 2017 Mean 

rdI – 0.154*** 
(0.009) 

0.155*** 
(0.009) 

0.155*** 
(0.009) 

0.152*** 
(0.009) 

0.147*** 
(0.009) 

0.133*** 
(0.009) 

0.098*** 
(0.009) 

0.097*** 
(0.009)  

0.137 

rdC – 0.042*** 
(0.003) 

0.043*** 
(0.003) 

0.042*** 
(0.003) 

0.042*** 
(0.003) 

0.040*** 
(0.003) 

0.037*** 
(0.003) 

0.027*** 
(0.003) 

0.027*** 
(0.003)  

0.037 

Wk – 0.217*** 
(0.050) 

0.218*** 
(0.051) 

0.217*** 
(0.051) 

0.214*** 
(0.051) 

0.206*** 
(0.051) 

0.187*** 
(0.051) 

0.137*** 
(0.051) 

0.136*** 
(0.050)  

0.191 

The standard deviations of the estimated values are reported in parentheses. 
***, **, and * indicate significance at 1%, 5%, and 10%, respectively. 

Table 4 
Results: aggregation on patents.  

TFP OP LP 

Static Static Dynamic Dynamic Static Static Dynamic Dynamic 

λ1 0.129*** (0.028) 0.156*** (0.029) 0.101*** (0.033) 0.090*** (0.032) 0.122*** (0.027) 0.151*** (0.029) 0.113*** (0.031) 0.095*** (0.032) 
ρ   0.323*** (0.055) 0.307*** (0.054)   0.320*** (0.051) 0.313*** (0.052) 
λ2   0.083*** (0.016) 0.099*** (0.013)   0.085*** (0.016) 0.102*** (0.013) 
rdI 0.116*** (0.009) 0.105*** (0.010) 0.108*** (0.012) 0.095*** (0.012) 0.119*** (0.009) 0.106*** (0.010) 0.094*** (0.011) 0.099*** (0.012) 
rdC  0.027*** (0.003)  0.022*** (0.003)  0.026*** (0.003)  0.023*** (0.003) 
Wk 0.162*** (0.053) 0.161*** (0.056) 0.174*** (0.060) 0.136** (0.059) 0.153*** (0.051) 0.165*** (0.054) 0.167*** (0.056) 0.133** (0.058)s 
u − 0.251*** 

(0.008) 
− 0.272*** 
(0.009) 

− 0.226*** 
(0.008) 

− 0.243*** 
(0.008) 

− 0.257*** 
(0.007) 

− 0.245*** 
(0.008) 

− 0.282*** 
(0.007) 

− 0.241*** 
(0.008) 

ϵ 0.336*** (0.047) 0.323*** (0.050) 0.335*** (0.061) 0.336*** (0.060) 0.341*** (0.045) 0.328*** (0.048) 0.330*** (0.057) 0.326*** (0.060) 
Controls Yes 
Firm FE Yes 
Time FE Yes 
Obs 7126 

The standard deviations of the estimated values are reported in parentheses. 
***, **, and * indicate significance at 1%, 5%, and 10%, respectively. 

Table 5 
Results: lagged explanatory variables.  

TFP OP LP 

Static Static Dynamic Dynamic Static Static Dynamic Dynamic 

λ1 0.138*** (0.019) 0.145*** (0.020) 0.096*** (0.025) 0.105*** (0.025) 0.136*** (0.020) 0.141*** (0.023) 0.099*** (0.024) 0.102*** (0.025) 
ρ   0.328*** (0.045) 0.325 (0.044)   0.320*** (0.043) 0.324*** (0.044) 

s 
λ2   0.080*** (0.008) 0.079*** (0.009)   0.083*** (0.007) 0.077*** (0.008) 
rdI 0.119*** (0.008) 0.098*** (0.008) 0.100*** (0.010) 0.080*** (0.009) 0.125*** (0.008) 0.093*** (0.008) 0.109*** (0.007) 0.074*** (0.010) 
rdC  0.031*** (0.003)  0.021*** (0.005)  0.033*** (0.003)  0.026*** (0.003) 
Wk 0.137*** (0.035) 0.140*** (0.036) 0.137*** (0.044) 0.126*** (0.045) 0.135*** (0.034) 0.139*** (0.036) 0.131*** (0.044) 0.122*** (0.046) 
u − 0.233*** 

(0.010) 
− 0.254*** 
(0.009) 

− 0.223*** 
(0.008) 

− 0.236*** 
(0.008) 

− 0.237*** 
(0.009) 

− 0.244*** 
(0.011) 

− 0.235*** 
(0.011) 

− 0.241*** 
(0.010) 

ϵ 0.366*** (0.043) 0.373*** (0.044) 0.342*** (0.038) 0.345*** (0.039) 0.360*** (0.041) 0.368*** (0.043) 0.337*** (0.038) 0.355*** (0.038) 
Controls Yes 
Firm FE Yes 
Time FE Yes 
Obs 8144 

The standard deviations of the estimated values are reported in parentheses. 
***, **, and * indicate significance at 1%, 5%, and 10%, respectively. 
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7. Conclusions 

China is undergoing an economic transition from a factor-driven to 
an innovation-driven economy and faces a series of challenges, such as 
the inefficiency of innovation investment. This paper uses internal R&D, 
R&D collaboration, and knowledge spillovers as the “effective” R&D 
capital stocks of firms and uses data from Shanghai science and tech-
nology firms to assess their contribution to productivity. We exploit 
spatial panel data models with time-varying weights matrices con-
structed based on technological distance to capture knowledge spill-
overs and use control function to deal with the endogeneity from 
weights. 

The conclusion of this paper is that all components of effective R&D 
capital stocks have significant positive impacts on a firm's productivity. 
Knowledge spillovers have greater effects on a firm's TFP than its in-
ternal R&D input and R&D collaboration. For every 10 % increase in the 
knowledge capital of other technology-adjacent firms, the firm's pro-
ductivity will increase by 1.91 %. In addition, we find that if cooperative 
R&D capital is omitted, the contribution of internal R&D will be over-
estimated. In our baseline result, the estimates of internal R&D drop 
from 0.113 to 0.094 after controlling the cooperative R&D capital. 
Although R&D cooperation between enterprises is seen as a more direct 
form of cooperation than knowledge spillovers are, its impact on pro-
ductivity is much lower than that of knowledge spillovers. For every 10 
% increase in the amount of R&D collaboration, TFP increases by about 
0.37 %. This number is also lower than the contribution of the firm's 
internal R&D, which can increase TFP by about 1.37 %. This indicates 
that R&D collaboration among science and technology firms in Shanghai 
has not reached a high level of efficiency. As previously mentioned, 
there are many potential factors that restrict the efficiency of R&D 
collaboration. A possible explanation is that R&D across organizational 
boundaries requires many additional coordination, monitoring, and 
management costs. In addition, R&D cooperation has potential infor-
mation asymmetry. For example, one partner may only send relatively 
inefficient employees, even though they could meet the minimum 
quality of the project (Pisano, 1990; Williamson, 1989; Becker and 
Dietz, 2004). It is also possible that the scale of enterprise R&D coop-
eration is not at the optimal level. 

7.1. Policy implications 

The results provide useful insights into the impact of firms' effective 
R&D capital on TFP. Although the Chinese government has been 

encouraging R&D collaboration between firms and between firms and 
universities, the amount of R&D collaboration in our data shows an 
annual downward trend from 2009 to 2017 (see Fig. 3). We do not 
discuss the reasons for this tendency in this article, but our empirical 
results indicate that the return of R&D collaboration is at a lower level 
than that of internal R&D and knowledge spillovers. One potential 
implication of this article is that firms should be more careful with R&D 
collaboration because the inefficiency problem may result in the coop-
erative output being less than expected. 

Due to information asymmetry in R&D collaboration and coordina-
tion, monitoring, and management costs, firms cannot fully internalize 
R&D collaboration as effective R&D capital. Therefore, at firm level, a 
sound partner selection and evaluation mechanism should be estab-
lished to review the partners' technological innovation capabilities and 
resources and willingness to cooperate; a sound supervision mechanism 
and a long-term cooperation management mechanism should be estab-
lished. At government level, it is necessary to improve the legal system 
for corporate R&D collaboration, and to build a platform for cooperation 
and information sharing, to help the complementation of innovation 
resources of firms, and promote technological progress and economic 
growth. 

In addition, the results imply that knowledge spillovers through 
technological proximity have positive impacts on TFP. The sharing of 
scientific and technological information and knowledge between firms, 
and the strengthening of communication with advanced technological 
neighboring firms will help improve firms' TFP. The government should 
play an active role in platform building and provide a superior envi-
ronment for enterprises in technology exchange in terms of information 
sharing and policy support. 

7.2. Limitations 

One of the limitations of this article is the single source of the sample. 
Although Shanghai is one of the innovative pioneer cities in China and 
leads China's economic and technological development, due to the na-
ture of knowledge as a public good, firms in other cities or regions, 
especially the Yangtze River Delta region, also affect firms in Shanghai; 
however, this was not considered in our research. We do not claim that 
our results hold for other regions of China, but our empirical method can 
be directly applied to assess the contribution of effective R&D capital 
stocks. 
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Table 6 
Results: pooled regression on the full sample.  

TFP OP LP 

Static Static Static Static 

λ1 0.262*** 
(0.097) 

0.278*** 
(0.102) 

0.264*** 
(0.095) 

0.272*** 
(0.100) 

rdI 0.188*** 
(0.016) 

0.175*** 
(0.021) 

0.181*** 
(0.018) 

0.169*** 
(0.022) 

rdC  0.041*** 
(0.008)  

0.039*** 
(0.009) 

Wk 0.279*** 
(0.077) 

0.267*** 
(0.085) 

0.292*** 
(0.081) 

0.264*** 
(0.090) 

u − 0.279*** 
(0.060) 

− 0.345*** 
(0.068) 

− 0.298*** 
(0.065) 

− 0.353*** 
(0.070) 

ϵ 0.371** 
(0.151) 

0.368** 
(0.145) 

0.370** 
(0.160) 

0.373** 
(0.155) 

Controls Yes 
Firm FE Yes 
Time FE Yes 
Obs 87,720 

The standard deviations of the estimated values are reported in parentheses. 
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Appendix I

Fig. 3. The proportion of firms whose R&D amount accounts for >15 % of the total amount of scientific research.  

Appendix II  

Table 7 
Number of patents in each IPC section of the sample.  

IPC code Section name Number of patents 

A Human necessities  2045 
B Performing operations; transporting  9403 
C Chemistry; metallurgy  7631 
D Textiles; paper  793 
E Fixed constructions  2040 
F Mechanical engineering; lighting; heating; weapons; blasting  5730 
G Physics  10,403 
H Electricity  13,934  
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