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We characterize and measure a long-term risk-return trade-off for the
valuation of cash flows exposed to fluctuations in macroeconomic
growth. This trade-off features risk prices of cash flows that are realized
far into the future but continue to be reflected in asset values. We
apply this analysis to claims on aggregate cash flows and to cash flows
from value and growth portfolios by imputing values to the long-run
dynamic responses of cash flows to macroeconomic shocks. We ex-
plore the sensitivity of our results to features of the economic valuation
model and of the model cash flow dynamics.

I. Introduction

In this paper we ask the following question: How is risk exposure priced
in the long run? Current-period values of cash flows depend on their
exposure to macroeconomic risks, risks that cannot be diversified. The
risk exposures of cash flows are conveniently parameterized by the gap
between two points in time: the date of valuation and the date of the
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payoff. We study how such cash flows are priced, including an investi-
gation of the limiting behavior as the gap in time becomes large. While
statistical decompositions of cash flows are necessary to the analysis, we
supplement such decompositions with an economic model of valuation
to fully consider the pricing of risk exposure in the long run.

Long-run contributions to valuation are of interest in their own right,
but there is a second reason for featuring the long run in our analysis.
Highly stylized economic models, like the ones we explore, are misspe-
cified when examined with full statistical scrutiny. Behavioral biases or
transactions costs, either economically grounded or metaphorical in
nature, challenge the high-frequency implications of pricing models.
Similarly, while unmodeled features of investor preferences such as local
durability or habit persistence alter short-run value implications, these
features may have transient consequences for valuation.1 One option is
to repair the valuation models by appending ad hoc transient features,
but instead we accept the misspecification and seek to decompose the
implications.

Characterizing components of pricing that dominate over long ho-
rizons helps us understand better the implications of macroeconomic
growth rate uncertainty for valuation. Applied time-series analysts have
studied extensively a macroeconomic counterpart to our analysis by
characterizing how macroeconomic aggregates respond in the long run
to underlying economic shocks.2 The unit root contributions measured
by macroeconomists are a source of long-run risk that should be re-
flected in the valuation of cash flows. We measure this impact on fi-
nancial securities.

Our study considers the prices of exposures to long-run macroeco-
nomic uncertainty and the implications of these prices for the values
of cash flows generated by portfolios studied previously in finance. These
portfolios are constructed from stocks with different ratios of book value
to market value of equity. It has been well documented that the one-
period average returns to portfolios of high book-to-market stocks (value
portfolios) are substantially larger than those of portfolios of low book-
to-market stocks (growth portfolios) (see, e.g., Fama and French 1992).
We find that the cash flows of value portfolios exhibit positive comove-
ment in the long run with macroeconomic shocks whereas the growth
portfolios show little covariation with these shocks. Equilibrium pricing
reflects this heterogeneity in risk exposure: risk-averse investors must
be compensated more to hold value portfolios. We quantify how this

1 Analogous reasoning led Daniel and Marshall (1997) to use an alternative frequency
decomposition of the consumption Euler equation.

2 For instance, Cochrane (1988) uses time-series methods to measure the importance
of permanent shocks to output, and Blanchard and Quah (1989) advocate using restric-
tions on long-run responses to identify economic shocks and measure their importance.



262 journal of political economy

compensation depends on investor preferences and on the cash flow
horizon.

The pricing question we study is distinct from the more common
question in empirical finance: What is the short-run trade-off between
risk and return measured directly from returns? Even when equities are
explored, it is common to use the one-period return on equity as an
empirical target. Instead we decompose prices and returns by horizon.
For instance, the one-period return to a portfolio is itself viewed as the
return to a portfolio of claims to cash flows at different horizons. More-
over, the price of a portfolio reflects the valuation of cash flows at
different horizons. We use these representations to ask the following
questions: When will the cash flows in the distant future be important
determinants of the one-period equity returns, and how will the long-
run cash flows be reflected in portfolio values? From this perspective
we find that there are important differences in the risks of value and
growth portfolios, and these differences are most dramatic in the long
run.

Given our choice of models and evidence, we devote part of our
analysis to evaluating estimation accuracy and to assessing the sensitivity
of our risk measurements to the dynamic statistical specification. Both
tasks are particularly germane because of our consideration of long-run
implications. Our purpose in making such assessments is to provide a
clear understanding of where historical data are informative and where
long-run prior restrictions are most relevant.

In Section II we present our methodology for log-linear models and
derive a long-run risk-return trade-off for cash flow risk. In Section III
we use the recursive utility model to show why the intertemporal com-
position of risk that is germane to an investor is reflected in both short-
run and long-run risk-return trade-offs. In Section IV we identify im-
portant aggregate shocks that affect consumption in the long run.
Section V constructs the implied measures of the risk-return relation
for portfolio cash flows. Section VI presents conclusions.

II. Long-Run Risk

Characterization of the long-run implications of models through the
analysis of steady states or their stochastic counterparts is a familiar tool
in the study of dynamic economic models. We apply an analogous idea
for the long-run valuation of stochastic cash flows. The resulting valu-
ation allows us to decompose long-run expected returns into the sum
of a risk-free component and a long-term risk premium. This long-term
risk premium is further decomposed into the product of a measure of
long-run exposure to risk and the price of long-run risk. Unlike ap-
proaches that examine the relationship between one-period expected
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returns and preferences that feature a concern about long-run risk (e.g.,
Bansal and Yaron 2004; Campbell and Vuolteenaho 2004), our devel-
opment focuses on the intertemporal composition of risk prices and in
particular on the implied risk prices for cash flows far into the future.
The result we establish for long-run expected returns has the same
structure as the standard decomposition of one-period expected returns
into a risk-free component plus the product of the price of risk and the
risk exposure.

A. Stochastic Discount Factors

The state of the economy is given by a vector that evolves accordingxt

to a first-order vector autoregression (VAR):

x p Gx � Hw . (1)t�1 t t�1

The matrix G has eigenvalues with absolute values that are strictly less
than one. The sequence consists of vectors of normal{w : t p 0, 1, …}t�1

random variables that are independently and identically distributed over
time with mean zero and covariance matrix I. Although we consider a
first-order system, higher-order systems are accommodated by aug-
menting the state vector.

The time t price of an asset payoff at time is determined by at � 1
stochastic discount factor . For example, let be a claim toS f(x )t�1,t t�1

consumption at time . The time t price of this claim ist � 1
. Multiperiod claims are valued using multiples of theE[ f(x )S Fx ]t�1 t�1,t t

stochastic discount factor over the payoff horizon.
As we develop in Section III, the stochastic discount factor is deter-

mined by a representative agent’s intertemporal marginal rate of sub-
stitution. We feature two important specifications for the preferences
of this agent: constant relative risk aversion (CRRA) utility with a power
utility function and the recursive utility model of Kreps and Porteus
(1978), Epstein and Zin (1989), and Weil (1990).

Since the representative agent’s utility is defined over aggregate con-
sumption, the dynamics of consumption are important determinants of
the stochastic discount factor. We assume that differences in the loga-
rithm of aggregate consumption are a linear function of the state vector3

c � c p m � U x � l w . (2)t�1 t c c t 0 t�1

Under this assumption, in Section III we show that the logarithm of the

3 See Hansen et al. (2007) for a generalization with stochastic volatility.



264 journal of political economy

stochastic discount factor for a version of the recursives { log St�1,t t�1,t

utility model is linked to the state vector by

s p m � U x � y w . (3)t�1,t s s t 0 t�1

In the case of CRRA utility, , where g is the coefficient ofy p �gl0 0

relative risk aversion. As in the work of Hansen and Singleton (1983),
shocks to aggregate consumption have a negative price so that assets
with payoffs that are exposed to these shocks have higher average re-
turns. With recursive utility the impact of the vector of shocks onwt�1

the discount factor is modified. For example, when the intertemporal
elasticity of substitution is equal to one, the weighting on the current
shock becomes

y p �l � (1 � g)l(b),0 0

where is the subjective rate of time discount in preferences,log (b)

�

j j�1l(b) p l � U b G H�0 c
jp1

�1p l � bU(I � bG) H,0 c

and g is a measure of risk aversion. The vector is the discountedl(b)
impulse response of consumption to each of the respective components
of the standardized shock vector . As emphasized by Bansal andwt�1

Yaron (2004), the contribution of the discounted response to the sto-
chastic discount factor makes consumption predictability a potentially
potent way to enlarge risk prices, even over short horizons. Further, the
term captures the “bad beta” of Campbell and Vuolteenahogl(b)
(2004), except that they measure shocks using the market return instead
of aggregate consumption.

The linear specification of the discount factor (3) assumes that the
intertemporal elasticity of substitution is equal to one. We explore per-
turbations of this assumption and alternative assumptions about the risk
aversion parameter g.

B. The Risk-Return Trade-off

Our decomposition of long-run returns requires a specification of the
long-run components of cash flows. In our application these cash flows
are dividends flowing to those holding the stocks in the portfolios. We
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Fig. 1.—Cash flows relative to consumption for two portfolios. Quarterly logarithms of
the ratios of portfolio cash flows to consumption are depicted.

first consider a growth process modeled as the exponential of a random
walk with drift:

t

D* p exp zt � pw . (4)�( )t j
jp1

Observed cash flows have additional transient or stationary components.
We let be an observed cash flow that is linked to the growth process{D }t
via

D p D*f(x ). (5)t t t

To price , we value both the transient component and the growthD f(x )t t

component . The vector p measures the exposure to long-run risk,D*t
and our aim is to assign prices to this exposure. An important result is
that the effect of the growth component on the long-run risk-return
trade-off is invariant to the specification of f. The parameter z and the
transient component contribute to the implied asset values, butf(x )t
they do not affect the risk prices in the limit.

In our analysis we consider the cash flows from several portfolios.
Figure 1 displays three of our cash flow series: a portfolio of growth
stocks, a portfolio of value stocks, and the value-weighted market port-
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folio. The stocks included in the growth portfolio are those with a low
ratio of book equity to market equity, and the stocks included in the
value portfolio are those with a high ratio of book equity to market
equity. The portfolios are rebalanced as in Fama and French (1992).4

In figure 1, the cash flows are depicted relative to aggregate consump-
tion, with the initial cash flows normalized to equal aggregate con-
sumption. Notice that the cash flows of the growth portfolio grow much
more slowly than those of the value portfolio. The differences in growth
rates imply that the two portfolios are characterized by different values
of z and/or p. Our goal is to understand how different assumptions
about the long run are reflected in expected returns.

To do this we consider fixing the growth process (4) and examine
pricing for arbitrary choices of the function f. Since pricing is given by
the conditional expectation of the stochastic discount factor times the
asset payoff, fixing the growth process means that we incorporate this
process into the conditional expectations operator and create a one-
period valuation operator:

Pf(x) p E[exp (s � z � pw )f(x )Fx p x].t�1,t t�1 t�1 t

This operator is much like the conditional expectations operator, but
it differs in important ways. It is not representable using a transition
density function that integrates to one because of the contribution of
the stochastic discount factor and the stochastic growth. Our valuation
operator allows us to fix the long-run cash flow dynamics but consider
alternative transient components given by different choices of the func-
tion f. The date t price of the cash flow is .D D*P f(x )t�1 t t

Before we proceed, notice that pricing is recursive so that prices of
cash flows multiple periods in the future are inferred from the one-
period pricing operator through iteration. For example, the time t value
of date cash flow (5) is given byt � j

j

jD*[P f(x )] p D*E exp (s � pw ) � jz f(x )Fx p x ,�t t t t�t,t�t�1 t�t t�j t[ [ ] ]
tp1

where the notation denotes the application of the one-period valu-jP
ation operator j times. The prices of these cash flows eventually decline
as the horizon j increases. The rate of decline or decay in these values
depends on the expected growth in cash flows relative to the discount
rate. Our first result characterizes this limiting rate of decay in value.

When the function is assumed to be a log-linear function of thef(x)
state x, the functions are also log-linear functionsj{P f(x), j p 1, 2, …}

4 Details of the construction of the portfolios and cash flows can be found in Hansen,
Heaton, and Li (2005) and at http://www.bschool.nus.edu.sg/staff/biznl/papers/
bmdata.html.
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of the state. To see this, let for some row vector qf(x) p exp (qx � k)
and some number k. Using the properties of the lognormal distribution,
we get

Pf(x) p P[exp (qx � k)] p exp (q*x � k*),

where

q* p qG � U (6)s

and
2FqH � y � pF0

k* p k � m � z � . (7)s 2

Iteration of (6) and (7) j times yields the coefficients for the function
.jP f(x)

Repeated iteration of (6) converges to a limit that is a fixed point of
this equation: . The differences in the k’s from (7) con-�1q p U (I � G)¯ s

verge to
2FqH � y � pF¯ 0�n { m � z � .s 2

We include the minus sign in front of n because the right-hand side will
be negative in our applications. In our present-value calculations the
contribution to value from cash flows in the distant future becomes
arbitrarily small.

The limit of repeated iteration of the above relations is summarized
in the following result.

Result 1. The equation

Pe p exp (�n)e

has a strictly positive solution e given by . The�1e(x) p exp [U (I � G) x]s

corresponding value of �n is
2FqH � y � pF¯ 0�n p m � z � .s 2

The equation in result 1 is in the form of an eigenvalue problem,
and e is the unique (up to scale) solution that is strictly positive and
satisfies a stability condition developed in the Appendix. In what follows
we will refer to e as the principal eigenfunction, and it will be used to
represent some of the limits that follow.

While these iterations can be characterized simply for exponential
functions of the Markov state, the same limits are obtained for a much
richer class of functions. (See the Appendix for a characterization of
these functions.) Moreover, the limits do not depend on the starting
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values for q and k, but n in particular depends on the exposure to growth
rate risk given by the vector p.5

We use this characterization of the limit to investigate long-run risk.
As j gets larger, although approaches zero, it does so eventuallyjP f(x)
at a rate that is approximately constant. The value of n gives this as-
ymptotic rate of decay of the values. It reflects two competing forces:
the asymptotic rate of growth of the cash flow and the asymptotic, risk-
adjusted rate of discount.

To isolate the rate of discount or long-run rate of return, we compute
the limiting growth rate. Given that is a geometric random walk{D*}t

with drift, the long-run growth rate is

1h p z � p 7 p.2

The variance adjustment, , reflects the well-known Jensen’s in-p 7 p

equality adjustment. The transient components of cash flows do not
alter the long-run growth rate.6 The asymptotic rate of return is obtained
by subtracting the growth rate h from n. The following theorem sum-
marizes these results and gives a well-defined notion of the price of long-
run cash flow risk.

Theorem 1. Suppose that the state of the economy evolves accord-
ing to (1) and the stochastic discount factor is given by (3). Then the
asymptotic rate of return is

h � n p �* � p* 7 p,

where

�1p* { �y � U (I � G) H,0 s

p* 7 p*
�* { �m � .s 2

The vector p* prices exposure to long-run risk. It depends on the
assumed consumption dynamics and the preferences of the represen-
tative consumer. The vector p measures the extent to which cash flows
are exposed to long-run risk. By setting , we consider cash flowsp p 0
that do not grow over time and are stationary. An example is a discount
bond, whose asymptotic pricing is studied by Alvarez and Jermann

5 We could represent these transient components with a larger state vector provided
that this state vector does not Granger-cause in the sense of nonlinear prediction. This{x }t
allows us to include “share models” with nonlinear share evolution equations as in Santos
and Veronesi (2006).

6 Formally, a unit function is the eigenfunction of the growth operator

Gf(x) p E[exp (z � pw )f(x )Fx p x]t�1 t�1 t

with an eigenvalue given by .exp (h)



measuring long-run risk 269

(2005). The asymptotic rate of return for such a cash flow with no long-
run risk exposure is �*. Thus is the contribution to the rate ofp* 7 p

return coming from the exposure of cash flows to long-run risk. Since
p measures this exposure, p* is the corresponding price vector.

Theorem 1 gives the long-horizon counterpart to a risk-return trade-
off. The price of growth rate risk exposure parameterized by p is p*.
In the case of the power utility model,

p* p gl(1),

where l(1) is the long-run (undiscounted) response vector for con-
sumption to the underlying shocks. In the recursive utility model with
a unitary elasticity of substitution, this price is

p* p l(1) � (g � 1)l(b),

which is approximately the same for b close to unity. The single-period
counterparts will differ provided that consumption is predictable (see
Kocherlakota 1990; Bansal and Yaron 2004). Bansal, Dittmar, and Kiku
(forthcoming) study a limiting version of a risk-return relation under
log linearity and power utility. They focus on cumulative returns and
study consumption betas in a model in which dividends and consump-
tion are cointegrated with a coefficient that can differ across portfolios.
The limiting portfolio beta is determined by the cointegrating coeffi-
cient, which they use as a measure of long-run cash flow risk exposure.
Cointegration is not featured in our analysis. Our limiting risk prices
can be used in general log-linear settings including their environment.

C. Risk Premia over Alternative Horizons

While we have characterized the limiting expected rate of return, it is
of interest more generally to see how returns depend on the horizon
of the payoffs. Consider the expected return to holding a claim to a
single cash flow . This return is given by the ratio of expected cashDt�j

flow to current price. We scale this by the horizon and take logarithms
to yield

1 j j[logG f(x ) � logP f(x )].t tj

This expected return depends on the transitory cash flows . Whenf(x )t�j

a corresponding risk-free return is subtracted from this return, this
formula provides a measure of the risk premia by horizon. The risk
premia reflect both risk exposure and risk prices associated with the
different horizons.

Figure 2A displays estimates of risk-adjusted returns for the cash flows
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Fig. 2.—A, Expected returns by cash flow horizon. B, Holding period returns. Rates of
return are given in annual percentage rates. The expected rates of return in panel A are
computed over the investment horizon, and the returns in panel B are one-quarter holding
period returns on payoffs at the respective horizons.

produced by the growth and value portfolios (portfolios 1 and 5 in our
subsequent analysis as defined in Sec. V.C). These calculations assume
recursive preferences.7 For comparison, estimated returns for the mar-
ket portfolio are also reported. When considering the expected returns
for the growth and value portfolios, note that the observed average
returns to these portfolios are substantially different. As reported in
table 1 below, the expected one-period returns to the growth and values
portfolios are 6.8 percent and 11.9 percent, respectively.

The pattern of risk premia across horizons is intriguing. The expected
returns to the value portfolio increase with horizon in contrast to the
market portfolio and especially the growth portfolio. This effect is due

7 The risk aversion parameter is assumed to be 20. This large value is used to amplify
the effects of risk. We will say more about this parameter subsequently.
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to important exposure to long-run macroeconomic risk in the cash flows
from the value portfolio. In contrast, the risk premia for all portfolios
are similarly small for short horizons. As the horizon increases, the
expected returns approximate their long-run limits given in theorem 1
and the limiting differences are reflected in the prices of growth rate
risk. In Section V.E we investigate how sensitive these measurements are
to errors in the specification of growth and to estimation accuracy.

D. One-Period Returns

The expected one-period returns for the growth and value portfolios
are substantially different. Each of these one-period returns is a weighted
average of one-period returns to holding the corresponding cash flows
at alternative horizons. The gross holding period return to a security
that pays off in period j is given byf(x )t�j

j�1P f(x )t�1jR p exp (z � pw ) .t�1,t t�1 jP f(x )t

The logarithms of the expected gross returns for alternative j are re-
ported in figure 2B for the growth and value portfolios. As j gets large,
these returns are approximately equal to

e(x )t�1dR p exp (n) exp (z � pw ) , (8)t�1,t t�1 e(x )t

which is the holding period return to a security that pays off the pricing
factor e over any horizon j. This pricing factor is the principal eigen-
function of result 1. Thus for a given p the holding period returns
become approximately the same as the horizon increases. The weighting
of these returns is dictated by the relative magnitudes of , which willjP f
eventually decay asymptotically at a rate n. Thus, n gives us a measure
of duration, the importance of holding period returns far into the future
relative to holding period returns today. When n is closer to zero, the
holding period returns to cash flows far into the future are more im-
portant contributors to the portfolio decomposition of one-period
returns.8

8 In a paper presented at the same NBER Summer Institute (2004) as our paper, Lettau
and Wachter (2007) also considered the decomposition of one-period returns into the
holding period returns of the component cash flows. Their focus is different because they
feature the decomposition of a single aggregate return in a model in which the expected
holding period returns are larger for shorter horizons than for longer ones. While they
build a simple model of portfolio cash flows, they do not match their model to actual
cash flows from portfolios. In contrast, our focus is on the observed behavior of the cash
flows, and we find interesting differences in the return decompositions for the alternative
book-to-market portfolios even without the aggregate decomposition they advocate.
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The logarithm of the return has two components: a cash flowdR t�1

component determined by the reference growth process andz � pwt�1

a valuation component determined by the prin-n � log e(x ) � log e(x )t�1 t

cipal eigenfunction and it associated eigenvalue. While n and the cash
flow component change as we alter the cash flow risk exposure vector
p, remains the same.log e(x ) � log e(x )t�1 t

Figure 2B depicts this decomposition of expected returns for the
growth, value, and market portfolios described as a function of horizon.
The expected rate of return is much larger for the value portfolio once
we look at the returns to holding portfolio cash flows beyond 2 years
into the future. The limiting values in these figures are also good ap-
proximations to the entire figure after about 2 years.

E. Other Models of the Stochastic Discount Factor

Bansal and Lehmann (1997) have shown that a variety of asset pricing
models imply common bounds on the expected growth rate in loga-
rithms of the stochastic discount factors. These include asset pricing
models with forms of habit persistence and social externalities.9 While
Bansal and Lehmann focus on logarithmic bounds on stochastic dis-
count factors, the long-term risk-return trade-off of theorem 1 is invar-
iant across a similar variety of models. Such models differ only in their
transient implications for valuation.10 Thus the limiting one-period re-
turn (8) will be altered by the inclusion of a common state-dependent
contribution, but the long-term trade-off remains the same. See Hansen
(2006) for a more extensive discussion of these issues.

III. Pricing under Recursive Utility

In what follows we develop more fully a recursive utility model of investor
preferences. As we will illustrate, this model provides an important role
for the intertemporal composition of consumption risk for valuation at
short as well as long horizons. The resulting specification of the sto-
chastic discount factor gives us a tractable characterization of long-run
implications that is rich enough to imply differences in expected returns
as they relate to long-run risk.

9 Their analysis extends to some recent models of social externalities or preference
shocks such as Campbell and Cochrane (1999) and Menzly, Santos, and Veronesi (2004).

10 Formally, the eigenvalue of result 1 remains the same, but the eigenfunction is altered.
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A. Preferences and the Stochastic Discount Factor

The time t utility of the representative consumer is given by the constant
elasticity of substitution (CES) recursion

1�r 1�r 1/(1�r)V p {(1 � b)(C ) � b[R (V )] } . (9)t t t t�1

The random variable is the continuation value of a consumptionVt�1

plan from time forward. The recursion incorporates the current-t � 1
period consumption and makes a risk adjustment to the dateC R(V )t t t�1

continuation value. We use a CES specification for this risk ad-t � 1
justment as well:

1�g 1/(1�g)R(V ) { {E[(V ) FF ]} ,t t�1 t�1 t

where is the current-period information set. The outcome of theFt

recursion is to assign a continuation value at date t.Vt

This specification of investor preferences provides a convenient sep-
aration between risk aversion and the elasticity of intertemporal sub-
stitution (see Epstein and Zin 1989). For our purposes, this separation
allows us to examine the effects of changing risk exposure with modest
consequences for the risk-free rate. When there is perfect certainty, the
value of determines the elasticity of intertemporal substitution. A1/r
measure of risk aversion depends on the details of the gamble being
considered. As emphasized by Kreps and Porteus (1978), with prefer-
ences like these, intertemporal compound consumption lotteries cannot
necessarily be reduced by simply integrating out future information
about the consumption process. Instead the timing of information has
a direct impact on preferences, and hence the intertemporal compo-
sition of risk matters. As we will see, this is reflected explicitly in the
equilibrium asset prices we characterize. However, the aversion to simple
wealth gambles is given by g. Since we will explore “large values” of this
parameter, we also consider other interpretations of it related to investor
concerns about model misspecification.

In a frictionless market model, one-period stochastic discount factors
are given by the intertemporal marginal rates of substitution between
consumption at date t and consumption at date . For simplicity, wet � 1
assume an endowment economy, but more generally, this consumption
process is the outcome of an equilibrium with production. Preferences
are common across consumers, and in equilibrium they equate their
intertemporal marginal rates of substitution. Since we are using a re-
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cursive specification with two CES components, it is straightforward to
show that the implied stochastic discount factor is

r�g
�rC Vt�1 t�1S p bt�1,t ( ) [ ]C R (V )t t t�1

(see, e.g., Hansen et al. 2007). There are two contributions to the sto-
chastic discount factor. One is the direct consumption growth contri-
bution familiar from the Rubinstein (1976), Lucas (1978), and Breeden
(1979) model of asset pricing. The other is the continuation value rel-
ative to its risk adjustment. This second contribution is forward looking
and is present only when r and g differ.

A challenge in using this model empirically is to measure the contin-
uation value, , which is linked to future consumption via the recur-Vt�1

sion (9). One possible approach to the measurement problem is to use
the link between the continuation value and wealth defined as the value
of the aggregate consumption stream in equilibrium. A direct appli-
cation of Euler’s theorem for constant returns to scale functions implies
that

1�rW 1 Vt tp ,( )C 1 � b Ct t

where is wealth at time t. When , this link between wealth,W r ( 1t

consumption, and the continuation value implies a representation of
the stochastic discount factor based on consumption growth and the
return to a claim on future wealth. In general this return is unobservable.
The return to a stock market index is sometimes used to proxy for this
return as in Epstein and Zin (1991); or other components can be in-
cluded such as human capital with assigned market or shadow values
(see Campbell 1996).

In this investigation, as in those of Restoy and Weil (1998) and Bansal
and Yaron (2004), we base the analysis on a well-specified stochastic
process governing consumption and avoid the need to construct a proxy
to the return on wealth. This is especially important in our context
because we are interested in risk determined by the long-run effects of
shocks to aggregate quantities. These shocks may not be reflected in
the variation of a proxy for the return to aggregate wealth such as a
stock index. In contrast to the work of Restoy and Weil and Bansal and
Yaron, we begin with the case of since logarithmic intertemporalr p 1
preferences substantially simplify the calculation of equilibrium prices
and returns (see, e.g., Schroder and Skiadas 1999). When , ther p 1
wealth to consumption ratio is a constant, and the construction of the
stochastic discount factor using the return to the wealth portfolio breaks
down. We then explore sensitivity of pricing implications as we change
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the elasticity of intertemporal substitution.11 For example, Campbell
(1996) argues for less elasticity than the log case, and Bansal and Yaron
(2004) argue for more.

To calculate the continuation value, first scale in (9) by consump-Vt

tion:
1�r 1/(1�r)

V V Ct t�1 t�1p (1 � b) � b R .t ( ){ [ ] }C C Ct t�1 t

Next let denote the logarithm of the ratio of the continuation valuevt

to consumption, and let denote the logarithm of consumption andct

rewrite recursion (9) as

1
v p log {(1 � b) � b exp [(1 � r)Q(v � c � c )]}, (10)t t t�1 t�1 t1 � r

where isQt

1Q(v ) p log E[exp [(1 � g)v ]FF ].t t�1 t�1 t1 � g

B. The Special Case in Which r p 1

The limit in recursion (10) isr p 1

v p bQ (v � c � c )t t t�1 t�1 t

b
p log E[exp [(1 � g)(v � c � c )]FF ]. (11)t�1 t�1 t t1 � g

Recursion (11) is used by Tallarini (1998) in his study of risk-sensitive
business cycles and asset prices. For the log-linear stochastic specifica-
tion, the solution for the continuation value is

v p m � U x ,t v v t

where
�1U { bU (I � bG) ,v c

b 1 � g 2m { m � Fl � U HF .v c 0 v( )1 � b 2

11 Log-linear methods typically approximate around a constant consumption-wealth ra-
tio. Setting justifies this. The approximation method we explore is very similar tor p 1
a log-linear approximation. We employ it in part because of its explicit link to a local
theory of approximation and because it allows us to impose stochastic dynamics with an
extensive amount of persistence in the limit economy.
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In this formula, is the discounted sum of expected future growthU xv t

rates of consumption constructed using the subjective discount factor
b. The term is the shock exposure vector of the continuationl � U H0 v

value for consumption.
The stochastic discount factor when isr p 1

1�gC (V )t t�1S { b .t�1,t ( ) 1�g{ }C [R (V )]t�1 t t�1

Notice that the term of associated with the risk aversion parameterSt�1,t

g satisfies

1�g 1�g(V ) (V )t�1 t�1E FF p E p 1. (12)t1�g 1�g[ ] [ ][R (V )] E[(V ) FF ]t t�1 t�1 t

As we asserted in Section II, the stochastic discount factor is a linear
function of the lagged state and the shock vector as in (3). Thewt�1

coefficients of this function are
2 2(1 � g) Fl � U HF0 v

m p log b � m � ,s c 2

U p �U ,s c

y p �l � (1 � g)(l � U H ).0 0 0 v

The row vector of coefficients y0 weights the shock vector. From the
consumption dynamics (2), the initial response of consumption to a
date shock is , and the response of for ist � 1 w l w c j 1 1t�1 0 t�1 t�j

. The discounted (by the subjective rate of discount) valuej�1l { UG Hj c

of these responses is
�1l(b) { l � bU(I � bG) H p l � U H.0 c 0 v

Thus as claimed in Section II. The term l(b)y p �l � (1 � g)l(b)0 0

is a target of measurement even for one-period pricing. This is the
impact of predictability in consumption growth that is featured in Bansal
and Yaron (2004). It reflects the intertemporal composition of con-
sumption risk and creates an important measurement challenge in im-
plementation. Long-run risk can have important implications even for
one-period pricing. The impact persists over longer horizons as is con-
veyed by the limiting pricing formulas of Section II.

Since the term (12) in the one-period stochastic discount factor is
positive and it has conditional expectation equal to unity, it can be
thought of as distorting the probability distribution. The presence of
this distortion is indicative of a rather different interpretation of the
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parameter g. Instead of incremental risk aversion applied to continu-
ation utilities, Anderson, Hansen, and Sargent (2003) argue that g may
reflect investors’ concerns about not knowing the precise riskiness that
they confront in the marketplace. In this case the original probability
model is viewed as a statistical approximation, and investors are con-
cerned that the model may be misspecified. Although we continue to
refer to g as a risk aversion parameter, this alternative interpretation is
germane to our analysis because we will explore sensitivity of our mea-
surements to the choice of g. Changing the interpretation of g alters
what might be viewed as reasonable values of this parameter.

To be concrete, under the alternative interpretation suggested by
Anderson et al. (2003), is the contribution to the induced(g � 1)l(b)
prices because investors cannot identify potential model misspecifica-
tion that is disguised by shocks that impinge on investment opportu-
nities. An investor with this concern explores alternative shock distri-
butions including ones with a distorted mean. He uses a penalized
version of a max-min utility function. In considering how big the con-
cern is about model misspecification, we ask if it could be ruled out
easily with historical data. This leads us to ask how large is(g � 1)l(b)
in a statistical sense. Subsequently we present evidence that isFl(b)F
approximately 0.01. Using this value, suppose that and a hy-g p 10
pothetical decision maker is asked to tell the two models apart. He would
have about a 24 percent chance of getting the correct answer given 250
observations. Doubling g changes this probability to about 6 percent.12

In this sense g as high as 10 is plausible from the perspective of statistical
ambiguity. In contrast, the potential misspecification when isg p 20
considerably easier to detect on the basis of historical data. See Hansen
(2007) for a more extensive discussion of such calculations. As we ex-
plore large values of g in our empirical work, perhaps part of the large
choice of g can be ascribed to statistical ambiguity on the part of
investors.

C. Intertemporal Substitution (r ( 1)

Approximate characterizations of equilibrium pricing for recursive util-
ity have been produced by Campbell (1996) and Restoy and Weil (1998)
on the basis of a log-linear approximation of budget constraints. Hansen
et al. (2007) use a distinct but related approach and follow Kogan and
Uppal (2001) by approximating around an explicit equilibrium com-
puted when and then varying the parameter r. The stochasticr p 1

12 These numbers are essentially the same if the Bayesian prior probability of each model
is 0.5 or if the min-max solution that equates the type I and type II errors is adopted.
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discount factor is expressed as an expansion around the case of r p
:1

1 1s ≈ s � (r � 1)Ds ,t�1,t t�1,t t�1,t

where is the derivative of the discount factor with respect to r1Dst�1,t

evaluated at . This derivative is a stochastic process that is a qua-r p 1
dratic function of the shock vector . The approximation of the dis-wt�1

count factor allows us to calculate the derivative of the asymptotic rate
of return for any cash flow process. The details of the calculation and
implementation of this approximation are given in the Appendix and
in Hansen et al. (2007).

IV. Long-Run Consumption Risk

We now describe the estimation of the consumption dynamics needed
to characterize how risk is priced. As in much of the empirical literature
in macroeconomics, we use VAR models to identify interesting aggregate
shocks and estimate the dynamics. For our initial model we let log
consumption be the first element of and log corporate earnings beyt

the second element. Our use of corporate earnings in the VAR is im-
portant as a predictor of consumption and as an additional source of
aggregate risk.13 Changes in corporate earnings signal changes in ag-
gregate productivity, which will have long-run consequences for
consumption.

The process is presumed to evolve as a VAR of order l. In the{y }t
results reported subsequently, . The least restrictive specificationl p 5
we consider is

…A y � A y � A y � � A y � B p w . (13)0 t 1 t�1 2 t�2 l t�l 0 t

The vector is two-dimensional, and the square matrices ,B A j p 1,0 j

, are two by two. The shock vector has mean zero and co-2, … , l wt

variance matrix I.
Form

2 l…A(z) { A � A z � A z � � A z .0 1 2 l

By inverting the matrix polynomial for the autoregressive repre-A(z)
sentation, we obtain the power series expansion for the moving-average
coefficients. We are interested in a specification in which is non-A(z)

13 Whereas Bansal and Yaron (2004) also consider multivariate specification of con-
sumption risk, they seek to infer this risk from a single aggregate time series on con-
sumption or aggregate dividends. With flexible dynamics, such a model is not well iden-
tified from time-series evidence. However, while our shock identification allows for flexible
dynamics, it requires that we specify a priori the important sources of macroeconomic
risk.
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singular for . The discounted consumption response is ,�1FzF ! 1 u A(b)c

where selects the first row, the row consisting of the consumptionuc

responses. Multiplying by gives the geometric average response1 � b

�1l(b) p (1 � b)u A(b) (14)c

as required by our model. When is singular, there are unit rootA(1)
components to the time series. While cannot necessarily be in-A(1)
verted, (14) will still have a well-defined limit as b tends to one provided
that the limiting response of the logarithm of consumption to a shock
is finite.

Following Hansen et al. (2005), we impose two restrictions on the
matrix . We impose a unit root in consumption and earnings, butA(1)
we restrict these series to grow together.14 Both series respond in the
same way to shocks in the long run, so they are cointegrated. Since the
cointegration relation we consider is prespecified, we estimate the model
as a VAR in the first difference of the log consumption and the differ-
ence between log earnings and log consumption. In Section V.E we
explore other assumptions about growth.

As is known from the literature on structural VARs, ideally a mac-
roeconomic model assigns economically interesting “labels” to shocks
by imposing a priori restrictions to make this assignment. Macroeco-
nomic labeling is not featured in our analysis. Instead we use two iden-
tification schemes depending on the purpose.

Our first assignment simplifies the representation and interpretation
of our results. Given our focus on the analysis of long-run risk, we
normalize the shocks so that only one shock has long-run consequences.
We achieve this by first constructing a temporary shock to consumption
that has no long-run impact on consumption and corporate earnings.
We construct the second shock so that it is uncorrelated with the first
one and has equal permanent effects on consumption and earnings.15

By design, exposure to this shock dominates long-run valuation.16

For reporting the accuracy of measurements, we use a recursive
scheme to identify shocks. This makes the Bayesian method of inference
for impulse response functions proposed by Sims and Zha (1999) and
Zha (1999) directly applicable. Under this scheme the second shock is
restricted not to influence the growth rate of consumption in the initial
period. The likelihood function for the two-equation system factors into
two separate pieces: one coming from the consumption growth equation
and the other from an equation with the log of the ratio of corporate
earnings to consumption on the left-hand side and the contempora-

14 Formally, we restrict , where the column vector a is freely estimated.A(1) p a[1 �1]
15 This construction is much in the same spirit as Blanchard and Quah (1989).
16 This is formally true in the power utility model and approximately true in the recursive

utility model.
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neous growth rate of consumption on the right-hand side along with
the appropriate number of lagged values of each of the variables. We
impose separable noninformative priors for the regression coefficients
conditioned on the regression error variances and on the marginals for
the regression error variances as in Box and Tiao (1973). These “priors”
are chosen for convenience, but they give us a simple way to depict the
uncertainty associated with the estimates. We use these priors in com-
puting posterior distributions for the short-run and long-run responses
of the permanent shock to consumption. We consider only the region
of the posterior distribution for which the transformed VAR system
(expressed in terms of consumption growth rates and the difference in
logarithms of consumption and corporate earnings) has stable dy-
namics.17

We use aggregate consumption of nondurables and services taken
from the National Income and Product Accounts as our measure of
consumption. This measure is quarterly from 1947:1 to 2005:4, is in real
terms, and is seasonally adjusted. We measure corporate earnings from
NIPA and convert this series to real terms using the implicit price de-
flator for nondurables and services. Using these series, we estimate the
system with cointegration.

In figure 3 we report the response of consumption to permanent and
temporary shocks. The immediate response of consumption to a per-
manent shock is approximately twice that of the response to a temporary
shock. Permanent shocks are an important feature of aggregate con-
sumption. The full impact of the permanent shock is slowly reflected
in consumption and ultimately accumulates to a level that is more than
twice the on-impact response.

A. Estimation Accuracy

With recursive utility, the geometrically weighted average responses of
future consumption to the underlying shocks affect both short-run and
long-run risk prices. For this reason, the predictable responses of con-
sumption to shocks identified by the VAR with cointegration affect risk
prices at all horizons. The estimated responses are subject to statistical
error especially over the long run. To compute posterior distributions,
we imposed the priors described previously on each equation in the
VAR system and simulated the posterior histograms for the parameter
estimates. While these priors are chosen for convenience, they give us
a simple way to depict the statistical uncertainty associated with the
estimates. We display the implied posterior distributions for the short-

17 We used only simulation draws for which the absolute values of the eigenvalues of
the transformed VAR were all less than 0.999.
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Fig. 3.—Impulse responses of consumption to permanent and temporary shocks implied
by bivariate VARs where consumption and earnings are assumed to be cointegrated. Each
shock is given a unit impulse. Responses are given at quarterly intervals.

run and long-run responses in figure 4. The magnitude of the long-run
response is and the magnitude of the short-run response isFl(1)F

. The vertical lines in each plot are located at the posterior medians.Fl F0
As might be expected, the short-run response estimate is much more

accurate than the long-run response. Notice that the horizontal scales
of the histograms differ by a factor of 10. In particular, while the long-
run response is centered at a higher value, it also has a substantial right
tail. Consistent with the estimated impulse response functions, the me-
dian long-run response is about double that of the short-term response.
In addition, nontrivial posterior probabilities are given to substantially
larger responses.18 Thus, from the standpoint of statistical accuracy, the
long-run response could be more than double that of the immediate
consumption response. When , long-run risk prices are approxi-b ≈ 1
mately equal to . These prices are expressed as required additionsgl(1)

18 The accuracy comparison could be anticipated in part from the literature on esti-
mating linear time-series models using a finite autoregressive approximation to an infinite
order model (see Berk 1974). The on-impact response is estimated at the parametric rate,
but the long-run response is estimated at a considerably slower rate that depends on how
the approximating lag length increases with sample size. Our histograms do not confront
the specification uncertainty associated with approximating an infinite order autoregres-
sion, however.



Fig. 4.—A, Posterior histogram for the magnitude of the immediate response ofFl F0

consumption to shocks. B, Posterior histogram for the magnitude of the long-runFl(1)F
response of consumption to the permanent shock. The vertical axis in each case is con-
structed so that the histograms integrate to unity. Vertical lines are located at the posterior
medians.
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Fig. 5.—Norm of for different values of b and three different VAR systemsl(b)

to expected rates of return for an exposure to a shock with a unit
standard deviation. Depending on the choice of g, long-run risk prices
could be quite substantial when accounting for statistical uncertainty.

B. Specification Sensitivity

In the long-run risk model of Bansal and Yaron (2004), low-frequency
shocks to consumption are driven by an unobserved latent variable. In
contrast, we identify the long-run impact of shocks using corporate
earnings and the assumption that these earnings are cointegrated with
consumption. Cointegration plays an important role both in identifying
the long-run impact of the permanent shock depicted in figure 3 and
in determining the temporal pattern of the responses to both shocks.
The impact of these identified patterns on prices is given by whengl(b)

.r p 1
To assess the importance of the assumption of conintegration, in

figure 5 we depict as a function of b for the baseline model andFl(b)F
for two alternative specifications of the relationship between consump-
tion and corporate earnings: a VAR estimated in log levels and a VAR
estimated in first differences. The log-level VAR is estimated to be stable,
and as a consequence the implied . This convergence is re-Fl(1)F p 0
flected in the figure, but only for values of b very close to unity. For
more moderate levels of b, the log-level specification reduces the mea-
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sure of by a third. The first-difference specification gives resultsFl(b)F
that are intermediate relative to the baseline specification and the log-
level specification. In summary, our restriction that consumption and
earnings respond to permanent shocks in the same way ensures a larger
value of and hence larger risk prices for any given value of g.Fl(b)F

C. Implications for Pricing Aggregate Consumption

Although consumption is not equal to dividends, it is still instructive to
examine the price of aggregate risk as represented by a claim on ag-
gregate consumption. In this case p is equal to the long-run exposure
of consumption to the two shocks: l(1). With recursive preferences and

, the excess of the asymptotic return to the consumption claimr p 1
over the riskless return is

l(1) 7 [l(1) � (g � 1)l(b)].

The expected excess return is essentially proportional to g because of
the dependence of the risk-free benchmark on g when b is close to one.

Even in the long run, the consumption claim is not very risky. The
point estimates of the VAR system imply that .l(1) 7 l(1) p 0.0001
Hence when b is near unity, increases in g have a very small impact on
the expected excess return to the consumption claim. For example,
even when , the expected excess return, in annual units, is 0.4g p 10
percent ( ).p 10 # 0.0001 # 4

Notice, however that because of significant sampling uncertainty, this
excess return could be much larger. For example, assuming that g p

, the posterior distribution illustrated in figure 4 implies that there10
is a 10 percent chance that the long-run excess return to holding the
consumption claim could be larger than 1.65 percent annually. By way
of contrast, the same posterior distribution for the short-run excess
return (given by ) has 10 percent of its mass above a muchgl 7 l(1)0

smaller value of 0.4 percent. A notable price for long-run risk cannot
be ruled out by these data once a large value of g is assumed.

V. Long-Run Cash Flow Risk

We now ask whether exposure to long-run risk can help to explain
differences in returns for particular portfolios of stocks familiar from
financial economics. Previously, Campbell and Vuolteenaho (2004) and
Bansal, Dittmar, and Lundblad (2005) have related measures of long-
run cash flow risk to one-period returns using a log linearization of the
present-value relation. Our aim is different but complementary to their
study. As we described in Section II, we study how long-term cash flow
risk exposure is priced.
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We consider cash flows that may not grow proportionately with con-
sumption. This flexibility is consistent with the models of Campbell and
Cochrane (1999), Bansal et al. (2005), Lettau, Ludvigson, and Wachter
(forthcoming), and others and is suggested by figure 1. It is germane
to our empirical application because the sorting method we use in
constructing portfolios can induce permanent differences in dividend
growth. While physical claims to resources may satisfy balanced growth
restrictions, financial claims of the type we investigate need not as re-
flected in the long-run divergence displayed in figure 1.

Consistent with our use of VAR methods, we consider a log-linear
model of cash flow growth,

d � d p m � U x � i w ,t�1 t d d t 0 t�1

where is the logarithm of the cash flow. This growth rate process hasdt

a moving-average form:

d � d p m � i(L)w ,t�1 t d t�1

where

�

ji(z) p i z� j
jp0

and

i if j p 00i pj j�1{U G H if j 1 0.d

A. Martingale Extraction

In Section II, we considered benchmark growth processes that were
geometric random walks with drifts. Empirically our cash flows are ob-
served to have stationary components as well. This leads us to construct
the random walk components to the cash flow process. Specifically, we
represent the log dividend process as the sum of a constant, a martingale
with stationary increments, and the first difference of a stationary pro-
cess.19 Write

d � d p m � U x � i wt�1 t d d t 0 t�1

p m � i(1)w � U *x � U *x ,d t�1 d t�1 d t

19 A martingale decomposition is commonly used in establishing central limit approx-
imations (see, e.g., Gordin 1969; Hall and Heyde 1980). For a scalar linear time series, it
coincides with the decomposition of Beveridge and Nelson (1981).
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where

�1i(1) p i � U (I � G) H,0 d

�1U * p U (I � G) .d d

Thus has a growth rate and a martingale component with incre-{d } mt d

ment . To relate this to the development in Section II, ,i(1)w i(1) p pt

, and in the cash flow representation (5). Wem p z f(x ) p exp (�U *x )d t d t

will fit processes to cash flows to obtain estimates of and .i(1) md

B. Empirical Specification of Dividend Dynamics

We identify dividend dynamics and, in particular, the martingale com-
ponent using VAR methods. Consider a VAR with three variables:i(1)
consumption, corporate earnings, and dividends (all in logarithms).
Consumption and corporate earnings are modeled as before in a coin-
tegrated system. In addition to consumption and earnings, we include
separately the dividend series from each of the five book-to-market port-
folios and from the market. Thus the same two shocks that were iden-
tified previously remain shocks in this system because we restrict con-
sumption and corporate earnings to be jointly autonomous. An
additional shock is required to account for the remaining variation in
dividends beyond what is explained by consumption and corporate earn-
ings. As is evident from figure 1, these series have important low-
frequency movements relative to consumption. Cash flow models that
feature substantial mean reversion or stochastically stable shares relative
to aggregate consumption are poor descriptions of these data.

Formally, we append a dividend equation,

…A*y* � A*y* � A*y* � � A*y* � B* p w*, (15)0 t 1 t�1 2 t�2 l t�l 0 t

to equation system (13). In this equation the vector of inputs is

yty* { ,t [ ]dt

and the shock is scalar with mean zero and unit variance. This shockw*t
is uncorrelated with the shock that enters (13). The third entry ofwt

is normalized to be positive. We refer to (15) as the dividend equationA*0
and the shock as the dividend shock. As in our previous estimation,w*t
we set . Initially, we presume that this additional shock has a per-l p 5
manent impact on dividends,20 but subsequently we will explore sensi-
tivity of our risk measures to alternative specifications of long-run sto-

20 This imposes the linear restriction .A*(1) p [a* �a* 0]
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TABLE 1
Properties of Portfolios Sorted by Book-to-Market

Portfolio

Market1 2 3 4 5

One-period expected
return (%) 6.79 7.08 9.54 9.94 11.92 7.55

Average book-to-
market .32 .61 .83 1.10 1.80 .65

Average price-
dividend 51.38 34.13 29.02 26.44 27.68 32.39

Note.—For “one-period expected return” we report the predicted quarterly gross returns to holding each portfolio
in annual units. The expected returns are constructed using a separate VAR for each portfolio with inputs given by the
first differences in log consumption, the difference between log consumption and log corporate earnings, and the
logarithm of the gross return of the portfolio. We imposed the restriction that consumption and earnings are not
Granger-caused by the returns. One-period expected gross returns are calculated conditional on being at the mean of
the state variable implied by the VAR. “Average book-to-market” for each portfolio is the average portfolio book-to-
market over the period computed from COMPUSTAT. “Average price-dividend” gives the average price-dividend for
each portfolio, where dividends are in annual units.

chastic growth in the cash flows. We estimated the VAR using the
transformed variables , , and to induce sta-(c � c ) (e � c ) (d � d )t t�1 t t t t�1

tionarity with four lags of the growth rate variables and five lags of the
logarithmic differences between consumption and earnings.

C. Book-to-Market Portfolios

We consider five portfolios constructed on the basis of a measure of
book equity to market equity, and we characterize the time-series prop-
erties of the dividend series as it covaries with consumption and earn-
ings. We follow Fama and French (1993) and build portfolios by sorting
stocks according to their book-to-market values. A coarse sort into five
portfolios makes our analysis tractable. Our market portfolio is the value-
weighted portfolio from the Center for Research in Security Prices.

Summary statistics for returns on these portfolios are reported in table
1. The portfolios are ordered by average book-to-market values, where
portfolio 1 has the lowest book-to- market value and portfolio 5 has the
highest. Book-to-market is an index of “growth” versus “value.” Stocks
with low book-to-market values are growth stocks because of their high
market value relative to book value. Conversely, stocks with high values
of book-to-market are value stocks. Portfolios 1–5 are therefore ordered
from growth to value. We call portfolio 1 the growth portfolio and
portfolio 5 the value portfolio.

Notice that the expected one-period rates of return increase from
growth to value stocks. The difference in expected returns to holding
the value portfolio versus the growth portfolio is substantial. It is well
documented that the differences in expected returns across the port-
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folios cannot be explained by differences in the contemporaneous co-
variances of the returns with consumption growth.

In this subsection we are particularly interested in the behavior of
the cash flows from the portfolios and how they are priced. The con-
structed cash flow processes accommodate changes in the classification
of the underlying stocks and depend on the relative prices of the new
and old stocks that move in and out of the book-to-market portfolios.
The monthly cash flow growth factors for each portfolio are constructed
from the gross returns to holding each portfolio with and without div-
idends. The difference between the gross return with dividends and the
one without dividends times the current price-dividend ratio gives the
cash flow growth factor. Accumulating these factors over time gives the
ratio of the current-period cash flow to the date 0 cash flow. We nor-
malize the date 0 cash flow to be unity. The measure of quarterly cash
flows in quarter t that we use in our empirical work is the geometric
average of the cash flows in quarters , , , and t. This lastt � 3 t � 2 t � 1
procedure removes the pronounced seasonality in dividend payments.
Details of this construction are given in Hansen et al. (2005), which
follows the work of Heaton (1995) and Bansal et al. (2005). The geo-
metric averaging induces a transient distortion to our cash flows but
does not distort the long-run stochastic behavior.

D. Investor Preferences and Intertemporal Pricing

Our measurements of the risk prices depend on parameters that govern
investor preferences: the parameter r that governs intertemporal sub-
stitution, the parameter g that contributes to risk aversion, and the
subjective discount factor b. We now explore how the intertemporal
pricing implications differ as we change these parameters. In our anal-
ysis, aggregate consumption is held fixed at the process we estimated
from historical data. In a model with explicit production, the dynamics
for consumption would be altered as we change investor preferences,
in ways that may be empirically implausible. Consideration of produc-
tion is interesting because it may imply additional model implications.
It is still revealing, however, to explore how prices and risk premia are
altered for a given consumption process as in the theoretical analysis
of Lucas (1978).

1. Risk and Return for Alternative Horizons

We first consider expected returns to holding claims to portfolio cash
flows at different horizons. As in figure 2 and Section II.C, we take
logarithms of the expected returns and scale them by horizon. To study
sensitivity to changes in the parameters that govern investor preferences,
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Fig. 6.—Logarithm of risk-free returns for alternative horizons: A, ; B, .g p 5 g p 20
Returns are in annualized percentages. b is .1/40.97

we find it convenient to split the results into two parts: risk-free returns
by horizon (fig. 6) and expected excess returns by horizon (fig. 7). The
results in both figures are computed assuming that the Markov state is
set to its unconditional mean.

These figures display the temporal counterpart to an insight in Ep-
stein and Zin (1989). Even large changes in the risk aversion parameter
g have only a modest impact on implied risk-free returns across the
entire term structure (fig. 6). In contrast, the parameter r (the recip-
rocal of the elasticity of substitution) has a big impact on risk-free re-
turns. This impact is enhanced when g is large. The impact of r could
be offset or enhanced by changing the subjective discount factor b. In
particular, changing b from 0.97 to 0.99 on an annual basis shifts the
curves down by about 2 percent. Such a shift can be defended given
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Fig. 7.—Logarithms of the ratio of expected returns to holding cash flows from port-
folios 1 and 5 at different horizons to risk-free counterparts divided by the horizon: A,
portfolio 1, ; B, portfolio 5, ; C, portfolio 1, ; D, portfolio 5, .g p 5 g p 5 g p 20 g p 20
Expected excess returns are in annualized percentages. b is set to .1/40.97

the seemingly low short-term risk-free rate but can have adverse con-
sequences for dividend-price ratios, as we will discuss in the next sub-
section. The real term structure in this model is rather “boring,” but
papers by Kleshchelski and Vincent (2007) and Piazzesi and Schneider
(2007) suggest ways to enrich this model to confront term structure
evidence. Our primary interest in this paper is in the pricing of risk
over longer horizons.

Figure 7 shows that the parameter g has a substantial impact on the
expected excess returns across different horizons as well as on the long-
horizon limits. Changing r from unity to or has only a minor3/2 2/3
impact on the risk premia across the different horizons. The impact is
visible only for very large values of g. While our model solution is valid
for arbitrarily large values of g, it is local in r, which discourages us
from exploring more extreme values of r.

The predicted risk premia obtained by holding the cash flows of
portfolio 1 at alternative horizons are all close to zero. Moreover, the
expected excess returns to holding these cash flows vary only slightly
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with horizon regardless of the value of g. This occurs because portfolio
1 has low cash flow covariation with consumption at all horizons.

The parameter g has a substantial impact on the predicted excess
returns to holding the cash flows of portfolio 5 (a portfolio of high
book-to-market stocks). These cash flows have much different exposure
to consumption risk across horizons. The short-run exposure is similar
to that of portfolio 1, but the long-run exposure is much higher. As in
other studies, to magnify the importance of these differences we must
assume that risk aversion is relatively high. For example, when g p

, expected excess returns rise dramatically with horizon for portfolio20
5. Recall that this portfolio has observed average returns that are quite
high compared to those of portfolio 1. Figure 7 provides a possible
explanation of the observed fact: portfolio 5 has cash flows with sub-
stantial exposure to consumption risk in the long run.

2. Value-Based Measures of Duration

Up until now, we have focused on the return implications of the cash
flows. Changes in preference assumptions also have implications for the
contributions of future cash flows to current-period values. Recall from
the Gordon growth model that it is the difference between the rate of
return and the rate of cash flow growth that determines the price-
dividend ratio. The discrete-time counterpart to this formula states that

price exp (growth rate)
p .

dividend exp (return rate) � exp (growth rate)

As in the Gordon growth model, the difference between the long-term
rates of return and growth gives a limiting measure of the duration of
a cash flow. This difference is the parameter n in result 1. When n is
small, cash flows far into the future remain important contributors to
current-period values.21 As we argued in Section II.D, this duration mea-
sure incorporates an adjustment for growth rate risk exposure. To char-
acterize the role of investor preferences, table 2 splits n into the two
components that enter the Gordon growth model: a rate of return and
a rate of dividend growth.

As we showed in figure 1 and in table 2, the long-run growth rates
of the portfolios are substantially different. Low book-to-market port-
folios have low limiting growth rates, but they also have high price-
dividend ratios (see table 1). Naive application of the Gordon growth
model with a common rate of return for all portfolios would suggest

21 Formal application of the Gordon growth model in this context gives the price-divi-
dend ratio for a security with a transient component to the cash flow that is proportional
to the function e in result 1.
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TABLE 2
Limiting Cash Flow Discount and Growth Rates

Portfolio
Rate of
Return Derivative

Rate of
Growth

g p 5

1 6.27 3.81 2.11
2 6.42 3.81 1.94
3 7.03 3.76 4.32
4 7.16 3.77 4.02
5 7.42 3.75 7.02

g p 20

1 5.39 10.45 2.11
2 5.98 10.35 1.94
3 8.37 9.64 4.32
4 8.89 9.75 4.02
5 9.92 9.51 7.02

Note.—Limiting expected rates of return and growth rates for the cash flows of
portfolios 1–5. The derivative entries are computed with respect to r and evaluated
at . Returns and growth rates are reported in annualized percentages.r p 1

that the low book-to-market portfolios should have low price-dividend
ratios. Of course these portfolios have different exposures to risk, and
hence measures of duration are potentially greatly affected by the price
of this risk and not just by differences in cash flow growth rates. This
leads us to explore when the model-implied rates of return can offset
the growth rate differences.

For the low book-to-market portfolios to have comparable measures
of duration relative to the high book-to-market portfolios, their limiting
rates of return must be substantially lower. This can be attained by
making g sizable. Changing r (as reflected by the derivatives) has an
important impact on the value-based measures of duration, but this
impact is almost the same across the various portfolios. Similarly, chang-
ing the subjective discount factor b alters the rates of return in the same
way across the portfolios. Differential rates of return are achieved by
making g large. Notice that for and , our measure of du-r p 1 g p 5
ration for portfolio 5 is barely positive. Even small increases in b or
reductions in r make this measure negative, implying an infinite price-
dividend ratio. This tension is less severe when we make g larger.

E. Measurement Accuracy of Long-Run Risk Prices

So far our discussion in this section abstracts from errors in estimating
the cash flow growth rates and risk exposure. The results in table 2 are
likely to be fragile from the standpoint of measurement accuracy, but
we include them because they illustrate some important consequences
of changes in investor preferences. In the next two subsections, we
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TABLE 3
Accuracy of Risk Measures: Estimates of l(1) 7 p Scaled by 400

Portfolio

Quantile

.05 .25 .5 .75 .95

1 �.63 �.13 �.05 �.01 .10
2 �.19 �.03 .01 .04 .22
3 .01 .06 .12 .28 1.42
4 .04 .10 .17 .32 1.46
5 .04 .12 .21 .42 1.88
Market �.01 .03 .06 .12 .58
5 � 1 .02 .07 .32 .67 2.81

Note.—Quantiles were computed by simulating 100,000 times using “noninformative” priors. The quantiles were
computed using VARs that included consumption, corporate earnings, and a single dividend series with one ex-
ception. To compute quantiles for the row, dividends for both portfolios were included in the VAR.5 � 1

address formally estimation accuracy and sensitivity to specification as
they relate to risk prices.

1. Estimation Uncertainty

When , the expected excess returns are approximately equal tor p 1

gl(1) 7 p.

We now investigate the statistical accuracy of for the five port-l(1) 7 p

folios and for the difference between portfolios 1 and 5. The vector p

is measured using i(1). In table 3 we report the posterior distribution
for computed using the same Bayesian approach we describedl(1) 7 p

previously, except that we now include a third equation in the VAR. We
scale the values of by 400 just as we did when reporting predictedl(1) 7 p

annualized average returns in percentages.
Given that our measurements are based on the implied limiting be-

havior of the estimated VAR, we expect a considerable amount of sta-
tistical uncertainty in these risk measures. Nevertheless, there are im-
portant differences in the relative risk exposures of portfolios 1 and 5.
There is significant evidence that the cash flows of a portfolio of value
stocks are riskier than those of the portfolio of growth stocks.

2. Specification Uncertainty

So far our measurements and inferences are conditioned on particular
models of stochastic growth. In this subsection we explore the impact
of changing the growth configurations for cash flow dynamics. The
specifications we consider allow portfolio dividends to have growth pat-
terns that are distinct from consumption and accommodate the het-
erogeneity evident in figure 1. These alternative models of dividend
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growth have antecedents in the prior empirical literature. As we will
see, however, the various models have much different implications for
the properties of long-run returns predicted by our model.

In our baseline model, we identified dividend dynamics and, in par-
ticular, the martingale component i(1) using VAR methods. We used a
VAR with three variables: consumption, corporate earnings, and divi-
dends (all in logarithms). Consumption and earnings were restricted
to the same long-run response to permanent shocks. In addition, divi-
dends had their own stochastic growth component.

We now consider two alternative specifications of dividend growth.
Both are restrictions on the equation

…A*y* � A*y � A*y � � A*y � B* � B*t p w*, (16)0 t 1 t�1 2 t�2 l t�l 0 1 t

where the shock is scalar with mean zero and unit variance and isw*t
uncorrelated with the shock vector that enters (13). The third entrywt

of is normalized to be positive. As in our previous estimation, we setA*0
, and the third column of for is restricted tol p 5 A* j p 0, 1, … , lj

have zeros in its first two entries. In other words, we continue to restrict
the dividend process not to Granger-cause either consumption or cor-
porate earnings, or, equivalently, we may view consumption and earnings
jointly as an autonomous stochastic system. We also continue to presume
that we may configure the first two shocks so that one of them has a
common permanent impact on consumption and corporate earnings
whereas the other one has only a transient impact on both series.

The first alternative specification restricts the trend coefficient toB*1
be equal to zero and is the model used by Hansen et al. (2005). The
other coefficients in the last row of equation system (16) are unrestricted
in our estimation. Given our interest in measuring long-run risk, we
measure the permanent response of dividends to the permanent con-
sumption shock. While both consumption and corporate earnings con-
tinue to be restricted to respond to permanent shocks in the same
manner, the dividend response is left unconstrained. In contrast to our
baseline specification, there is no separate growth component for div-
idends in this specification. Such a component could emerge in the
estimation, but we do not restrict equation system (16) to have a second
growth component in contrast to the baseline specification.

The second alternative specification includes a time trend by freely
estimating . A model like this, but without corporate earnings, wasB*1
used by Bansal et al. (2005).22 We refer to this as the time trend spec-
ification. In this model the time trend introduces a second source of
dividend growth.

22 While they do not include macroeconomic predictors of consumption, Bansal et al.
(2005) do allow for dividends to Granger-cause consumption.



measuring long-run risk 295

Fig. 8.—Impulse responses to a permanent shock to consumption of the cash flows to
portfolios 1 and 5: A, from the first-difference specification used as our baseline model;
B, from the level specification without time trends; C, from the level specification with
time trends.

The role of specification uncertainty is illustrated in the impulse re-
sponses depicted in figure 8. This figure features the responses of the
cash flows of portfolios 1 and 5 to a permanent shock to consumption.
For each portfolio, the measured responses obtained for each of the
three growth configurations are quite close up to about 12 quarters (3
years), and then they diverge in ways that are quantitatively important.
Both portfolios initially respond positively to the shock, with peak re-
sponses occurring in about seven quarters. The response of portfolio 5
is much larger in this initial phase than that of portfolio 1. The two
alternative models for portfolio 5 give essentially the same impulse re-
sponses. The time trend is essentially zero for portfolio 5. The limiting
response of the alternative models is much lower than that of the base-
line specification.

For portfolio 1 there are important differences in the limiting re-
sponses of all three models. The limiting response of the baseline model
is negative. Notice, however, that when a time trend is introduced in
place of a stochastic growth component, the limit becomes substantially
more negative. The time trend specification implies that portfolio 1
provides a large degree of consumption insurance in the long run in
contrast to the small covariation measured when the additional growth
factor is stochastic, as in our baseline dividend growth model. When
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consumption/earnings is the sole source of growth, the limiting re-
sponse is positive but small. While the limiting responses are sensitive
to the growth specification, the differences in the long-run responses
between portfolios 1 and 5 are approximately the same for the time
trend model and for our baseline dividend growth model.23

While the use of time trends in the second alternative specification
as additional sources of cash flow growth alters our results, use of these
results requires that we take these trends literally in quantifying long-
run risk. Is it realistic to think of these secular movements, which are
independent of consumption growth, as deterministic trends when
studying the economic components of long-run risk? We suspect not.
While there may be important persistent components to the cash flows
for portfolio 1, it seems unlikely that these components are literally
deterministic time trends known a priori to investors. We suspect that
the substantially negative limiting response for portfolio 1 is unlikely to
be the true limiting measure of how dividends respond to a permanent
shock to consumption.24 The dividend growth specification that we used
in our previous calculations, while ad hoc, presumes that the additional
growth component is stochastic and is a more appealing specification
to us.25

V. Conclusion

Growth rate variation in consumption and cash flows has important
consequences for asset valuation. The methods on display in this paper
formalize the long-run contribution to value of the stochastic compo-
nents of discount factors and cash flows and quantify the importance
of macroeconomic risk. We used these methods to isolate features of
the economic environment that have important consequences for long-
run valuation and heterogeneity across cash flows. We made operational
a well-defined notion of long-run cash flow risk and a well-defined lim-

23 Bansal et al. (2005) use their estimates with a time trend model as inputs into a cross-
sectional return regression. While estimation accuracy and specification sensitivity may
challenge these regressions, the consistency of the ranking across methods is arguably
good news, as emphasized to us by Ravi Bansal. We are using the economic model in a
more formal way than the running of cross-sectional regressions, however.

24 Sims (1991, 1992) warns against the use of time trends using conditional likelihood
methods because the resulting estimates might overfit the the initial time series, ascribing
it to a transient component far from the trend line.

25 In the specifications we have considered, we have ignored any information for fore-
casting future consumption that might be contained in asset prices. Since our model of
asset pricing implies a strict relationship between cash flow dynamics and prices, prices
should be redundant sources of information. Prices, however, may reveal additional com-
ponents to the information set of the investor. When we consider an alternative specifi-
cation of the VAR that includes prices (without imposing the pricing restrictions), we
obtain comparable heterogeneity.
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iting contribution to the one-period returns coming from cash flows in
the distant future. Finally, we showed how valuation-based measures of
the duration of cash flows are linked explicitly to the long-run riskiness
of the cash flows.

In our empirical application we showed that the cash flow growth of
portfolios of growth stocks has negligible covariation with consumption
in the long run whereas the cash flow growth of value portfolios has
positive covariation. For these differences to be important quantitatively,
investors in our model must be either highly risk averse or highly un-
certain about the probability models they confront. Increasing the in-
tertemporal substitution parameter r magnifies the differential of the
long-run counterpart of price-dividend ratios.

There are three intriguing extensions of our work: (a) providing a
structural interpretation of shocks, (b) exploring alternative models of
investor preferences and constraints, and (c) introducing time variation
in local risk prices. In regard to point a, for convenience we used an
ad hoc VAR model to identify the macroeconomic shocks to be priced.
An important next step is to add more structure to the macroeconomic
model, structure that will sharpen our interpretation of the sources of
long-run macroeconomic risk. In regard to point b, other asset models
have interesting transient implications for the intertemporal composi-
tion of risk prices and exposures. These include models that feature
habit persistence (e.g., Sundaresan 1989; Constantinides 1990; Heaton
1995) and models of staggered decision making (see, e.g., Lynch 1996;
Gabaix and Laibson 2002). In regard to point c, temporal dependence
in volatility can be an additional source of long-run risk. Time variation
in risk prices can be induced by conditional volatility in stochastic dis-
count factors. It remains to explore implications of stochastic volatility
for long-term valuation.

While the methods we have proposed aid in our understanding of
asset pricing models, they also expose measurement challenges in quan-
tifying the long-run risk-return trade-off. Important inputs into our cal-
culations are the long-run riskiness of cash flows and consumption. As
we have shown, these objects are hard to measure in practice. Statistical
methods typically rely on extrapolating the time-series model to infer
how cash flows respond in the long run to shocks. This extrapolation
depends on the details of the growth configuration of the model. In
many cases these details are hard to defend on purely statistical grounds.
Statistical challenges that plague econometricians presumably also
plague market participants. Naive application of rational expectations
equilibrium concepts may endow investors in these models with too
much knowledge about future growth prospects. Learning and model
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uncertainty are likely to be particularly germane to understanding long-
run risk.26

Appendix

Eigenfunction Results

In what follows we use the notation

M { exp (s � z � pw ).t�1,t t�1,t t�1

A. Eigenfunctions and Stability

We follow Hansen and Scheinkman (2008) by formalizing the approximation
problem as a change in measure. Our analysis is in discrete time in contrast to
their continuous-time analysis. Moreover, we develop some explicit formulas that
exploit our functional forms.

We formalize the approximation problem as a change in measure.27 Write the
eigenfunction problem as

E[M e(x )Fx ] p exp (�n)e(x ).t�1,t t�1 t t

Then

e(x )t�1M̂ p exp (n)Mt�1,t t�1,t[ ]e(x )t

satisfies

ˆE[M Fx ] p 1.t�1,t t

As a consequence, induces a distorted conditional expectation operator.M̂t�1,t

Recall our solution to this problem. Then by the usual completee(x) p exp (qx)¯
the square argument, changes the distribution of from being a mul-M̂ wt�1,t t�1

tivariate standard normal to being a multivariate normal with mean

′ ′ ′ ′m̂ p H q � p � y (A1)¯w 0

and covariance matrix I. This adds a constant term to the growth rate of con-
sumption. Let the implied distorted expectation operator be denoted by .Ê

To characterize the limiting behavior, we use this distorted shock distribution
in our computations. For instance,

f(x )t�1ˆE[M f(x )Fx ] p exp (�n)e(x )E Fx .t�1,t t�1 t t t[ ]e(x )t�1

26 See Hansen (2007) for a discussion of learning and uncertainty and its impact for
short-run pricing.

27 See Hansen and Scheinkman (2008) for a justification of this change of measure in
a continuous-time nonlinear environment. Our analysis is in discrete time and exploits
our log-linear formulation.
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Iterating, we obtain

f(x )t�jˆE[M f(x )Fx ] p exp (�nj)e(x )E Fx .t�j,t t�j t t t[ ]e(x )t�j

The limit that interests us is

f(x ) f(x )t�j tˆ ˆlimE Fx p Et[ ] [ ]e(x ) e(x )jr� t�j t

provided that has a well-defined stationary distribution under the proba-ˆ{x } Et

bility distribution, and the conditional expectation operator converges to the
corresponding unconditional expectation operator.

Let q and denote the stationary densities of under E and the measures.ˆq̂ {x } Et

The density q is normal with mean zero and covariance matrix

�

j ′ j ′S p (G )HH (G ) ,�
jp0

which can be computed easily using a doubling algorithm. The density isq̂
normal with the same covariance matrix, but the nonzero mean for inducedwt

the following nonzero mean for :xt

�1 ′ ′ ′ ′m̂ { (I � G) H(H q � p � y ). (A2)¯x 0

Consider now a joint Markov process and the equation{(x , z ) : t ≥ 0}t t

z e(x ) e(x )t�1 t�1 tE M Fx p exp (�n) .t�1,t t( )[ [ ] ] [ ]z z zt t�1 t

While this amounts to a rewriting of the initial eigenvalue equation, it has a
different interpretation. The process is a transient contribution to the sto-{z }t
chastic discount factor, and the eigenfunction equation is now expressed in
terms of the composite state vector (x, z) with the same eigenvalue and an
eigenfunction . The limit of interest is nowe(x)/z

f(x )z f(x )zt�j t�j t tˆ ˆlimE Fx p E .t[ ] [ ]e(x ) e(x )jr� t�j t

To ensure that this limit is well defined, we require that the joint process {(x ,t
be stationary, ergodic, and aperiodic under the distorted probability distri-z )}t

bution and that have a finite expectation under this distribution.f(x )z /e(x )t t t

B. Eigenvalue Derivative

We compute this derivative using the approach developed in Hansen (2006).
Suppose that depends implicitly on a parameter r. Since each member ofM̂t�1,t

the parameterized family has conditional expectation equal to unity,

ˆ ˆ� logM �Mt�1,t t�1,tÊ Fx p E Fx p 0.t t[ ] [ ]�r �r



300 journal of political economy

Note that

ˆ� logM � logM �n � log e(x ) � log e(x )t�1,t t�1,t t�1 tˆ ˆ ˆE Fx p E Fx � � E Fx � .t t t[ ] [ ] [ ]�r �r �r �r �r

Since the left-hand side is zero, applying the law of iterated expectation under
the probability measure, we get7̂

� logM �n � log e(x ) � log e(x )t�1,t t�1 tˆ ˆ ˆ0 p E � � E � E .[ ] [ ] [ ]�r �r �r �r

Since is stationary under the probability measure,ˆ{x } 7t

�n � logMt�1,tˆp �E .[ ]�r �r

To apply this formula, write

logM p s � z � pw .t�1,t t�1,t t�1

Differentiating with respect to r, we get

11 ′ ′Ds p w G w � w G x � c � c x � c w .t�1,t t�1 0 t�1 t�1 1 t 0 1 t 2 t�12

Recall that under the distorted distribution has a constant mean con-ˆw mt�1 w

ditioned on given by (A1), and has a mean given by (A2). Takingˆx x mt t x

expectations under the distorted distribution, we get

1 11 ′ ′ˆ ˆ ˆ ˆ ˆ ˆ ˆE(Ds ) p (m ) G m � trace(G ) � (m ) G m � c � c m � c m .t�1,t w 0 w 0 w 1 x 0 1 x 2 w2 2
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