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Abstract

We introduce a class of interpretable tree-based models (P-Trees) for analyzing panel data,

with iterative and global (instead of recursive and local) splitting criteria to avoid overfitting

and improve model performance. We apply P-Tree to generate a stochastic discount factor

model and test assets for cross-sectional asset pricing. Unlike other tree algorithms, P-Trees

accommodate imbalanced panels of asset returns and grow under the no-arbitrage condition.

P-Trees also graphically capture nonlinearity and interaction effects and accommodate regime-

switching and interactions between macroeconomic states and firm characteristics. For exam-

ple, P-Tree identifies inflation as the most important macro predictor with regime-switching in

U.S. equity data. Based on multiple pricing, prediction, and investment metrics, we find that

(boosted or time-series) P-Trees outperform standard factor models and PCA latent factor mod-

els. An equally-weighted portfolio for five factors generated by P-Trees delivers an excess alpha

of 1.09% against the Fama-French 3-factor benchmark, producing an annualized Sharpe ratio

of 1.98 out-of-sample. Data-driven cutpoints in P-Trees reveal that long-run reversal, volume

volatility, and industry-adjusted market equity drive cross-sectional return variations, consis-

tent with variable importance analysis using random forests.

Key Words: CART, Cross-Sectional Returns, Latent Factor Model, Machine Learning, Panel

Data, Stochastic Discount Factor, Tree Ensembles.
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1 Introduction

Decision tree algorithms such as the popular Classification and Regression Trees (CART, intro-

duced in Breiman et al., 1984) are highly adaptive, nonlinear machine learning methods that have

received wide and successful applications. They help split or cluster observations based on data

features and predictors, effectively capture nonlinear and interaction effects, and importantly, ad-

mit their graphical representation and interpretations. Meanwhile, despite the popularity of linear

factor models (e.g., Fama and French, 1993; Hou et al., 2015; Fama and French, 2015), researchers in

empirical asset pricing recognize the need to apply nonlinear machine learning models to explain

the cross-section variations in returns (e.g., Rossi and Timmermann, 2015; Freyberger et al., 2019;

Nagel, 2021). Yet methods such as deep learning (e.g., Feng et al., 2020) appear to economists and

practitioners as black boxes despite the superior pricing or prediction performances.

This study fills the gap by balancing model performance and interpretability using a new deci-

sion tree approach to split the cross-section of individual assets and address the high-dimensionality,

nonlinearity, and interactions in financial data. Specifically, we develop a unified P-Tree framework

(“P” stands for panel) for analyzing potentially imbalanced panel data, which allows us to generate

and estimate a latent factor model. With the graphical visualization of a decision tree, P-Tree offers

an alternative top-down solution to security sorting for splitting asset returns, transparently reveal-

ing feature interactions in both the time series and the cross section. Besides elucidating the stock

return variation, P-Tree generates test assets and profitable trading strategies by grouping simi-

lar assets into leaf portfolios using their lagged characteristics and nonlinear interactions. With a

global asset pricing criterion (no-arbitrage), P-Tree recovers the stochastic discount factor and yields

a time-varying beta factor model that accurately prices individual asset returns. The methodology

is broadly applicable for building trees for panel data with multi-period leaves and global split

criteria as economic restrictions to guard against overfitting and improve model performance.

Our asset pricing application illustrates two methodology innovations in P-Trees. First, the

nodes allow multi-period returns and more effectively extract information from panel data. An as-

set pricing P-Tree model resembles the conditional sorting scheme instead of the simultaneous sort-

ing scheme (i.e., Fama-French ME - B/M 5×5 portfolios). While most security sorting procedures
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do not consider cutpoints but sort assets into quintile or decile portfolios, P-Trees sequentially de-

cide on cutpoints in a data-driven way. The leaves are a time series (in vector form) of (weighted)

averages of individual asset returns within each period, constituting basis portfolios. Extant tree

algorithms such as CART search the optimal cutpoints and order of splitting characteristics by min-

imizing the squared loss when building the decision tree, assuming independent and identically

distributed (i.i.d.) observations conditional on the covariates. The conditional security sorting pro-

cedure can be viewed as a single-period tree building process since the CART algorithm predicts

everything with a constant. Our innovation provides the first multi-period tree to approximate

conditional security sorting in empirical asset pricing under an imbalanced panel data structure.

Second, a P-Tree grows based on a global splitting criterion guided by asset pricing theory. The

split criterion in traditional CART is designed to fit the average returns rather than a factor pricing

model. The CART recursive algorithms optimize at each split for the corresponding parent node

without considering other sibling nodes. For example, the splitting criterion in Breiman et al. (1984)

is simply the aggregated sum of squared error, which is equivalent to minimizing pricing errors

when applied to asset pricing. This greedy strategy focuses on local optimization and usually leads

to overfitting unless one considers an ensemble of trees. In contrast, P-Tree splits iteratively based

on the asset pricing improvement estimated through the loss from a linear factor model. All assets

in the cross-section are considered, including those not in the splitting parent node.

Empirically, we apply P-Trees to individual stock returns in the U.S. equity market from 1981

to 2020, with twenty years of data for training and testing. The P-Tree and market-adjusted P-Tree

outperform most other models, including standard observable and latent factor models, in terms of

asset pricing, return prediction, and factor investment performance for both in-sample and out-of-

sample analysis. In particular, P-Tree generates a latent factor model with performance superior to

most machine learning methods and are comparable to recent PCA or deep learning models (Lettau

and Pelger, 2020; Kelly et al., 2019; Kim et al., 2021; Chen et al., 2020; Feng et al., 2020; Gu et al., 2021).

An equally-weighted portfolio for five P-Tree factors delivers a significant alpha of 1.09% against the

Fama-French 3 factors plus an annualized Sharpe ratio of 1.98 in the out-of-sample analysis. Finally,

leaf basis portfolios generated by P-Tree and market-adjusted P-Tree portfolios show consistently

significant performances as test assets in out-of-sample studies.
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The evaluation of the out-of-bag variable importance shows only a few significant character-

istics that drive cross-sectional return variation, such as volume volatility and industry-adjusted

market equity. Moreover, we apply P-Tree to split the panel of return data over time series and

find inflation as the most important macro predictor for regime-switching. The long-term reversal

(MOM60M) and 1-year seasonality (SEAS1A) are more important for the high inflation periods, while

trading volume (DOLVOL) and volume volatility (STD DOLVOL) are more important for the low in-

flation periods. In addition, we apply P-Tree to visualize and investigate nonlinear and interaction

factors, which helps strengthen and resurrect several anomalies.

In general, P-Tree has several advantages over other tree-based models. First, single decision

trees have explicit and interpretable structures, graphically displying the feature interactions and

sequential splitting. Second, they incorporate bespoke global splitting criteria such as no-arbitrage

in the asset pricing example, reducing overfitting in noisy data and incorporating theoretical in-

sights. Third, they extract greater information from panel data, while inheriting the advantage

of the tree-based method that they are highly adaptive to the low signal-noise data environment

and relatively short observation history. Finally, specific to the asset pricing application, the value-

weighted leaf basis portfolios constitute natural test assets and imply lower transaction costs of

factor construction than in PCA and deep learning models.

Literature. Our paper adds to the fast-emerging literature on machine learning in finance.1 Our

P-Tree not only splits the cross-section for creating test assets, but also provides regularized estima-

tion to recover the stochastic discount factor. Prior attempts applying regression trees (including

random forests and boosted trees) to financial forecasting asset pricing (e.g., Gerakos and Gramacy,

2012; Moritz and Zimmermann, 2016; Rossi and Timmermann, 2015; Rossi, 2018; Gu et al., 2020;

Bianchi et al., 2021; Creal and Kim, 2021) typically do not tailor the tree structure for panel data

with distinctions between time series and cross section. P-Trees reveal the importance of incorpo-

rating dynamic patterns in the macroeconomic time series and the interactions of macroeconomic

1For example, Freyberger et al. (2019), Gu et al. (2020), Cong et al. (2021) find equity returns predictable using machine
learning and AI models. Bianchi et al. (2021) and Feng et al. (2020) find positive results on treasury bond returns, while
Bali et al. (2021) and He et al. (2021) find positive results on corporate bond returns. For direct portfolio construction,
Cong et al. (2020) provide a reinforcement learning approach, while Feng and He (2019) and DeMiguel et al. (2020) pro-
vide regularization methods by optimization or Bayesian modeling. Feng et al. (2020), Dong et al. (2021) and Bryzgalova
et al. (2021) apply variable selection methods to the zoo of factors.
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time series and asset characteristics.

The standard CART or its ensemble methods do not impose global criteria for growing the tree

either.2 We show that global criteria for splitting (which corresponds to no-arbitrage constraint)

produce betters results for asset pricing than other tree-based ML approaches focusing on predic-

tion. Consequently, we add to the emerging studies imposing economic restrictions for estimating

or evaluating machine learning (e.g. Feng et al., 2020; Chen et al., 2020; Avramov et al., 2021). In

particular, while no-arbitrage conditions have been used to estimate simple parametric models, it

is equally important to require such asset pricing criteria (instead of the popular prediction objec-

tives) when estimating large and flexible machine learning models to avoid overfitting under low

signal-to-noise financial data and to improve model performance.

One recent attempt along this line is Creal and Kim (2021) which analyzes all characteristics

at once and identify variables that best explain assets’ betas. The authors split currency-return

observations and implements a Bayesian factor model for currencies with regression tree priors,

cleverly using asset pricing objectives in the likelihood estimation and resampling process to pro-

duce stochastic posterior trees. P-Trees similarly use asset pricing criteria (no-arbitrage) to guide

tree grows, but we differ by (i) considering multi-period returns in the nodes to further extract in-

formation from panel data, (ii) growing more interpretable, deterministic trees that explicitly depict

feature interactions in addition to assisting variable selection, with prescriptions for managing port-

folios and developing new trading strategies in practice, (iii) estimating a latent factor model rather

than using MCMC sampling over observable factors, and (iv) focusing the empirical analysis on

equity markets and relating to previous tree-based studies for the same markets.

We also contribute to the growing literature in empirical asset pricing that develops latent

factor models for pricing cross-sectional returns and generating risk-adjusted returns. Lettau and

Pelger (2020), Kelly et al. (2019) and Kim et al. (2021) show different principal component methods

to produce latent factors, while Chen et al. (2020), Feng et al. (2020) and Gu et al. (2021) generate

the SDF through various deep learning models. In our empirical analysis, we show that several

comparative advantages lead to the superior performance: The P-Tree provides a characteristics-

driven partition for the cross-section of the stock universe. The generated leaf basis portfolios are
2Ensemble methods include random forests (Breiman, 2001), boosting trees, XGBoost (Chen and Guestrin, 2016),

Bayesian additive regression trees (Chipman et al., 2010), and the recent XBART (He et al., 2019; He and Hahn, 2021).
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value-weighted, and so the transaction cost of P-Tree factors is much lower than principal compo-

nent portfolios. Section 3.5 further demonstrates how the interpretability of P-Trees allows trading

strategies based on nonlinearity and sequential interactions in the feature space.

Finally, this paper is related to conditional asset pricing in general and the construction of basis

assets. We follow Avramov (2004), Gagliardini et al. (2016), and Feng and He (2019) to allow time-

varying, characteristic-driven factor loadings for individual stock returns. Ahn et al. (2009) use

cluster analysis to create basis assets; we add by documenting clustering patterns and investment

performance for leaf basis portfolios from both shallow and deep trees. Bryzgalova et al. (2020)

generate kernel-spanning test assets by pruning an exogenously given tree with leaves from deter-

ministic sorting; we focus on data-driven top-down tree growth and offer interpretability through

explicitly showing both leaves and branches — something more than just the posterior tree distri-

bution in Creal and Kim (2021) and the collection of leaves after pruning in Bryzgalova et al. (2020)).

The literature, including regularized linear models of Kozak et al. (2020) and its generalization in

Bryzgalova et al. (2020) and the RP-PCA rotation in Lettau and Pelger (2020), largely takes pre-

specified basis functions (sorted portfolios) as given. We add by generating the basis functions, test

portfolios, and the non-linear transformation of explanatory variables in a data-driven way using

trees, complementing the approach in Chen et al. (2020) using adversarial networks, among others.

2 P-Tree Factor Model for Asset Pricing

2.1 Classification and Regression Trees

A tree is a set of split rules (or cutpoints) defining a rectangular partition of the covariate space.

A cutpoint c̃ = (xi, ci) indicates splitting the data along variable xi using a threshold ci. The essence

for decision trees is thus choosing cutpoints to grow the tree. Tree-based models are easy to under-

stand, handles both numerical and categorical variables, requires relatively less data for training,

and performs well for big data problems. CART (classification and regression trees Breiman et al.,

1984) and its variants are among the popular algorithms in various tree-based applications such

as clinical study (e.g., Arnett et al., 1988), ecology (e.g., Guisan and Zimmermann, 2000), medical

diagnosis (e.g., Lemon et al., 2003), and more recently, asset pricing (e.g,. Rossi and Timmermann,
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2015; De Prado, 2018; Rossi, 2018; Li and Rossi, 2020).

Typical tree models such as CART grow by recursive partition, optimizing over all cutpoint

candidates using a split criterion. When considering split a node, the recursive algorithm only

processes with data within that specific node — a greedy approach preferred mainly for easy coding

and efficient computation. Take an application of CART to asset pricing for example. Let ri,t denote

the return of asset i at time period t. With a squared loss split criterion, which treats the cross-

sectional data as pool data, a cutpoint candidate is evaluated based on:

∑
i,t∈left node

(ri,t − r̄left)
2 +

∑
i,t∈right node

(ri,t − r̄right)
2

where r̄left = 1
#left node

∑
i,t∈left node ri,t and r̄right = 1

#right node

∑
i,t∈right node ri,t are average returns of

data in the left or right leaves respectively. Both the left and right leaves are constants over not only

the cross section but also the time-series (the constant does not have subscript for time nor stock),

which serve as pricing kernels for the corresponding individual stocks in a one-period model for

scalar outcomes.

Such tree models leave much to be desired because we want to form a basis portfolio — a vector

representing returns over multiple periods — at each leaf node instead of a constant. Moreover,

a tree-based factor pricing model aiming to recover the SDF from basis portfolios at the leaves

should satisfy no-arbitrage conditions. We therefore need to specify a tree that can accommodate

the panel data and adopt, rather than a local recusive split criterion, a global one evaluated at all

leaf portfolios according to their joint asset pricing efficacy.

Note that the two properties, (i) leaves containing a factor model instead of a constant and

(ii) having a global split criterion is not restricted to the applications in asset pricing, although we

focus on asset pricing to illustrate the advantages they bring. In fact, most of the extant regression

or classification trees do not allow us to fully extract the dynamic information in the panel data.

With noisy data, trees also easily overfit, unless one resort to ensemble methods that sacrifice a

single tree’s interpretability. Our global split criteria for guiding tree growth provides an alternative

to guard against overfitting while maintaining interpretability. We next develop a class of tree

models for panel data with global split criteria, which we term P-Trees (“P” stands for “panel”),
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and illustrate their effectiveness through an application in asset pricing with conditional pricing

kernels.

2.2 Conditional SDF Model Using P-Tree

A conditional stochastic discount factor (SDF) model that explains cross-sectional asset price

returns satisfies:

Et [mt+1ri,t+1] = 0⇐⇒ Et [ri,t+1] =
Covt (mt+1, ri,t+1)

Vart (mt+1)︸ ︷︷ ︸
βi,t

(
−Vart (mt+1)

Et [mt+1]

)
︸ ︷︷ ︸

λt

, (1)

where ri,t+1 is the excess return of individual asset i at time t + 1. βi,t and λt are the time-t mar-

ket expected SDF exposure of stock i and risk price of the SDF. A natural solution for mt+1, is its

projection onto the return space of the assets, i.e.,

mt+1 = 1− wᵀ
t rt+1, (2)

where rt+1 = (r1,t+1, · · · , rN,t+1)
ᵀ denotes returns of all assets at time period t+1, and wt is a vector

of portfolio weights. Substituting (2) into (1) yields the SDF portfolio weights:

wt = Et
[
rt+1r

ᵀ
t+1

]−1
Et [rt+1] . (3)

The extant literature does not estimate wt from a large number of individual stock returns mainly

due to the large dimension of the covariance term.

Following recent studies on latent factors (e.g., Lettau and Pelger, 2020; Kelly et al., 2019; Feng

et al., 2020), we use basis portfolios from a P-Tree (as opposed to individual stocks) to overcome

the estimation challenge. But unlike existing studies that pre-specify the basis portfolios, our P-Tree

algorithm splits the cross section of asset returns into basis portfolios in a data-driven manner while

imposing a global no-arbitrage criterion, in stark contrast with the standard CART criterion that is

recursive and local to specific leaves. Consequently, our tree grows iteratively to generate both the

leaf basis portfolio and the latent factor (SDF).
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Our P-Tree model splits the stock universe into non-overlapping basis portfolios by cross-

sectional quantiles of past firm characteristics (and possibly by time series macroeconomic vari-

ables). The number of basis portfolios increases one at a time when the tree splits a parent node into

two child nodes. At the k-th split of the tree growing process, we denote the SDF m(k)
t+1 generated

by basis portfolios R(k)
t+1 as:

m
(k)
t+1 = 1−W (k)

t R
(k)
t+1, (4)

W
(k)
t = Et

[
R

(k)
t+1R

(k)ᵀ
t+1

]−1
Et

[
R

(k)
t+1

]
. (5)

For the conditional factor model, the time-varying factor exposure βi,t is given by:

β
(k)
i,t =

Covt

(
W

(k)
t R

(k)
t+1, ri,t+1

)
Vart

(
W

(k)
t R

(k)
t+1

) . (6)

After the k-th split of the tree growing process, we model the time-varying factor exposures in

reduced-form in terms of past firm characteristic updates, which is common in the literature (e.g.,

Avramov, 2004; Kelly et al., 2019; Feng and He, 2019). In other words,

β
(k)
i,t = b

(k)
0 + b

(k)ᵀ
1 zi,t, (7)

where zi,t are firm characteristics such as market equities or book-to-market ratios.

2.3 Growing a P-Tree Under No-Arbitrage

A P-Tree at birth corresponds to CAPM: a single leaf basis portfolio with returns of all as-

sets. We gradually build the tree with additional splits by updating {R(k)
t+1,W

(k)
t , β

(k)
i,t } through an

iterative scheme: First of all, leaf basis portfolios, R(k)
t+1, are expanded by the iterative tree growth.

Second, the latent factor weights, W (k)
t , are estimated by the expanded leaf basis portfolios. Finally,

time-varying factor exposures, β(k)i,t , are updated by the new characteristics data and updated SDF

when fitting the cross-section.

Algorithm 1 summarizes the tree growth in pseudo-codes. We refer to the final nodes as ter-

minal or leaf nodes and the intermediate nodes as internal nodes. Let R(k)
t denote the return of the
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basis portfolios after the k-th leaf node of the tree, which can be equal or value weighted portfolio of

the assets in that specific leaf. The number of basis portfolios increase by one after each iterative

split. So, there are k + 1 basis portfolios after the k-th split, and R(k)
t = [R

(k)
1,t , R

(k)
1,t , · · · .R

(k)
k+1,t]

ᵀ.

Let us consider a baseline example using firm characteristics only. At the start, the entire cross-

section of stock returns are in the top node (root) of the tree, R(0)
t . We consider several cutpoints

candidates (pairs of firm characteristic and threshold value to split the returns). All firm character-

istics are normalized cross-sectionally in the range from -1 to 1. Instead of searching for hundreds

of cutpoints, we only consider the cross-sectional quintiles such as -0.6, -0.2, 0.2, and 0.6. This choice

follows the conventional security sorting and simplifies computation.

Figure 1: Demonstration of the first split.

R
(0)
t : STD DOLVOL ≤ 0.2

R
(1)
1,t R

(1)
2,t

yes no

Each cutpoint candidate partitions the root node to left and right child nodes comprised of

a subset of assets and observation months of the data. Each potential leaf can form a leaf basis

portfolio, denoted by R(1)
1,t and R

(1)
2,t . Since there are only two leaf nodes, the latent factor (SDF) is

estimated as a mean-variance efficient portfolio of the two leaf basis portfolios,

f
(1)
t = w(1)R

(1)
t , w(1) = Σ̂−11 µ̂1 (8)

where Σ̂−11 and µ̂1 are the covariance matrix and average returns of two leaf portfolios R(1)
t =

[R
(1)
1,t , R

(1)
2,t ]

ᵀ.3 We use a latent factor model to define the loss function when evaluating cutpoint

3On a separate note, to deal with the estimation error in the sample mean and sample covariance matrix estimation
for the mean-variance efficient portfolio, we add two small regularization parameters λΣ = 10−4 and λµ = 10−4 in
Equation 5. These two shrinkage parameters help to stabilize the portfolio weight estimation and avoid over-leveraging.
The similar regularized portfolio optimization problem is also addressed in Kozak et al. (2020) Equation (18) and (22),
and Bryzgalova et al. (2020).

W
(k)
t =

[
Et
(
R

(k)
t+1R

(k)ᵀ
t+1

)
+ λΣIk+1

]−1 [
Et
(
R

(k)
t+1

)
+ λµ1

]
. (9)
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candidate ck:

L(ck) =

T∑
t=1

Nt∑
i=1

(ri,t − β(zi,t−1)ft)
2 , (10)

where β(zi,t−1) = b0 + bᵀzi,t−1 are conditional factor loadings on the past firm characteristics. We

estimate the regression coefficients by the ordinary least squares estimator, using a pooled regres-

sion model for individual stock returns on ft and ft × zi,t−1 without an intercept. (10) is evaluated

for all cutpoint candidates ck ∈ C, and its minimizer is picked as the first cutpoint.

Figure 2: Demonstration of the cutpoint candidates for the second split.

R
(0)
t : STD DOLVOL ≤ 0.2

R
(1)
1,t : MOM36M ≤ −0.2 R

(2)
3,t

R
(2)
1,t R

(2)
2,t

yes no

yes no

(a) If split node R(1)
1,t at MOM36M.

R
(0)
t : STD DOLVOL ≤ 0.2

R
(2)
1,t R

(1)
2,t : ME IA ≤ 0.2

R
(2)
2,t R

(2)
3,t

yes no

yes no

(b) If split node R(1)
2,t at ME IA.

Next, we proceed to the second cutpoint. Note that there exist two leaf nodes after the first

split. The second split could happen at either the left or right child node of the root. We take an

iterative approach to grow the tree. We evaluate the split criteria for all cutpoint candidates at two

leaf nodes and pick the one minimizing the loss function. Figure 2 depicts the tree of the cutpoint

candidates for the second split. In both cases, one leaf node is split, becomes an internal node, and

creates two new leaf nodes. The SDF will be evaluated based on the three basis portfolios.

f
(2)
t = w(2)R

(2)
t , w(2) = Σ̂−12 µ̂2 (11)

where R(2)
t = [R

(2)
1,t , R

(2)
2,t , R

(2)
3,t ]. The graphical position of the three basis portfolios depends on the

which node to split, as shown in Figure 2. Similary, Σ̂−12 , µ̂2 are covariance matrix and average

return of the basis portfolios R2,t.

The next cutpoint is chosen similarly. For the k-th split, each cutpoint candidate of the existing
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k leaf nodes creates k + 1 leaf basis portfolio, which adds to the generation of the latent factor f (k)t ,

and hereby to evaluate the split criterion of Equation 10. The stopping conditions are pre-specified

as the total number of iterations, max depth of the tree, or the minimum number of data observa-

tions in a leaf node, whichever is met first. Algorithm 1 and Figure 3 summarize the procedure.

The P-Tree model differs from the standard tree models such as CART in several important

ways. First, each leaf of CART is associated with a constant (leaf parameter), which predicts which

new data fall in that leaf. CART aims to approximate a function by step function represented by

the tree. In contrast, the P-Tree has a clear economic objective. Each tree partitions the entire cross-

section of stock returns to multiple leaf basis portfolios and creates the latent factor. Second, unlike

CART for which splits are local and greedy, our P-Tree grows iteratively by examining all leaf basis

portfolios. The split criterion is defined globally as the pricing loss of the generated latent factor for

the returns of all assets, regardless of whether the data are in the current node or not.

Algorithm 1 The main algorithm that grows the asset pricing tree from the data.

1: procedure GROWTREE(y,X,Φ,Ψ, d, T , node)
2: outcome Grow the tree T and find corresponding basis portfolios
3: for i from 1 to num iter do . Loop over number of iterations
4: if the stopping conditions are met then
5: return.
6: else
7: Search the tree, find all leaf nodes A
8: for each leaf node Aj in A do . Loop over all current leaf nodes
9: for each cutpoint candidate ck in C do . Evaluate all cutpoint candidates

10: Partition data in Aj according to ck.
11: if Either left or right child of Aj does not satisfy minimal leaf size then
12: Ignore this cutpoint candidate.
13: else
14: Find the latent factor (SDF) based on all leaf portfolios as in equation (8).
15: Calculate the split criterion in equation (10).
16: end if
17: end for
18: end for
19: Find the leaf node to split and cutpoint ck that minimizes the split criterion (10).
20: Split the node selected at cutpoint ck. . Split one node at one iteration
21: end if
22: end for
23: return
24: end procedure
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Figure 3: Flowchat of the P-Tree Algorithm

Start

i<=num_inter

True

Search the Tree
Find All Leaf Nodes and Cutpoint

Candidates

Loop on Leaf Node 
and Cutpoint
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Calculate Factor Based on the Loop
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True

False
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True

Find the Leaf Node and Cutpoint
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2.4 Nonlinearity, Interaction, and Interpretability

Observing interaction in P-Tree. Tree-based models are known to work well in capturing non-

linearities and interactions in the data. Unlike deep learning models in which the nonlinearities

and interactions concerning specific features are unobserved, the structure of a tree transparently

displays which features interact and how. Despite this natural interpretability, a single tree tend

to overfit noisy data, and ensembles such as random forests are often used to improve a model’s

out-of-sample performance at the expense of interpretability.

Imposing global asset pricing conditions help reduce the overfit, as we see in Bryzgalova et al.

(2020). However, Bryzgalova et al. (2020) solve a regularized portfolio optimization problem and

prune final leaves without explicitly deriving the tree growth. P-Tree displays the complete tree

structure in a top-down manner while requiring global no-arbitrage. The output is a single tree

that does not overfit the data and performs well for pricing assets, all while revealing the exact

interactions of the input features in each layer of the tree growth.

As we show in our empirical analysis later, data-driven P-Trees allow us to observe feature

interactions and use the information to significantly improve over trading strategies, which are

based on uni-variate sorting without considering interactions or multiple sorts with exogenously-

specified sequence and variables. They also provide information for recovering the SDF and build-

ing a factor pricing model that performs as well as, if not better, than the best competing models.

More generally, a global slit criterion can be used to guard against overfitting of a single tree

and consequently presents directly empirical evidence for the nonlinearity and interaction in the

data — a task other machine learning approaches or ensemble methods fall short of.

Factor and portfolio constructions. P-Trees provide an alternative solution to portfolio construc-

tion and strategy development that utilizes the information on feature interaction and non-linearity.

For example, a two-layer P-Tree with two leaves splits the cross-section and creates two left and

right leaf portfolios. Guided by economic theory, one can construct a univariate factor to long

and short these two leaf basis portfolios. In practice, researchers typically use quintile or decile

sorted portfolios to create long-short portfolios (top-bottom or bottom-top) to generate higher re-

turn spreads between long and short legs. Researchers might also apply bivariate or triple-way sort
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to include the interaction of the characteristics when creating long-short portfolios.4

A P-Tree searches the optimal characteristics for interaction for the second and probably third

splits when growing the tree with the asset pricing goal. First, growing a tree model with three

layers makes it possible to have different interactions on the long and short legs from the first split.

Second, by partitioning the stock universe, one can graphically display the nonlinear characteristics-

return structures for the long and short legs. Third, the splitting order and cutpoints are data-driven

and informs of the sequence of sorting and the interaction of characteristics.

Variable importance and P-Tree robustness. Rather than growing a single tree, ensemble meth-

ods grow multiple trees either independently or dependently. Random forest and boosting are

two popular tree ensemble methods (Friedman et al., 2001). Plain-vanilla random forests (Breiman,

2001) grow a number of trees on bootstrapped training samples, which come from random samples

of the observations as well as variables from the complete training set. The forecast of the entire

ensemble is the average of all “decorrelated” trees, which usually has a smaller variance than that

of a single tree. Although we do not use random forests to improve P-Tree performance, we can use

it to identify important variables in creating latent factors as a robustness check for P-Tree models.

To this end, we apply the same bootstrap procedure in Random Forests to P-Trees, train various

“decorrelated” P-Trees on bootstrapped subsamples. To bootstrap panel data of individual stock

returns, we first take subsample in the time horizon, and for the selected period, the complete

cross-section of the panel data is preserved. Second, we randomly draw ten characteristics out of

the 61 for building each tree. The procedure repeats 500 times to form a forest (500 P-Trees).

In the empirical exercises, we focus on the out-of-bag (OOB) variable importance and define

two importance metrics. The first measurement of importance entails a variable’s frequency of be-

ing selected for splits. Intuitively, the more often a characteristic is selected as tree cutpoints, the

more important it is. For each bootstrapped subsample, a subset of characteristics is randomly

drawn to build the tree, and only a fraction of them are actually used to split. We count the num-

ber of times a particular characteristic zi being used in the first K splits and the total number of

4Different characteristics-sorted univariate, bivariate, or triple-way portfolios are available on Ken French’s website.
Commonly used long-short factors, such as Fama-French five factors, are linear combinations for these portfolios re-
stricted by the economic direction.
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appearances in bootstrapped subsamples. The measurement of importance is defined as:

Selection Probability(zi) =
#(zi is selected at first K splits)

#(zi appears in the bootstrapped subsamples)
(12)

The second importance measurement aims to capture a “treatment effect.” For the 500 trees

grown on bootstrapped subsamples, we force half of them to use a characteristic but the other

half not. Note that even if one characteristic is included in the subsample, it is not guaranteed

to be selected as cutpoints when building the tree. The with- and without- sampling scheme for

a particular characteristic creates the treatment effect evaluation and allows one to perform the

significance test of its importance. We compute the asset pricing model fitting performance, the

total R2 (Equation 18), for this treatment effect evaluation.

Char. Importance =

[
E(P-tree fit | with chari)

E(P-tree fit | without chari)
− 1

]
× 100 (13)

We can then compare the variables ranking high in importance in the random forest of P-Trees

to those first selected as cutpoints in a single P-Tree model. If they are similar, the P-Tree model with

global split criteria indeed behaves similarly as the less interpretable random forests that typically

achieve better out-of-sample performance.

2.5 Splitting the Time-Series and Regime Switching

The previous sections focus on the cross-section splits, i.e., all nodes in the tree split at the

firm characteristics zi,t. As the tree grows from top to bottom, the panel of stocks is partitioned

into many leaf nodes, and each leaf node maintains the entire time series from period 1 to T . In-

tuitively, the latent factors and/or factor loading functions may substantially differ under different

macroeconomic states (e.g., high and low inflation or interest rate states). There is a long literature

discussing regime changes in financial markets, involving, e.g., periods of high and low volatility,

or booms and recessions (e.g., Maheu and McCurdy, 2000; Ang and Timmermann, 2012).

In a P-Tree with only cross-sectional splits, although the factor loadings are time-varying based

on the firm characteristics, the latent factor generation is not. A natural solution is to create different

factor models and estimate corresponding loadings under different macroeconomic states. With a
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panel data of individual stock returns, the cutpoints of some nodes (for example, the root node)

can obviously involve macroeconomic variables instead of the firm characteristics. In other words,

P-Trees are flexible enough to incorporate time-series splits in addition to cross-section splits.

Given the short time-series observations of individual stock returns relative to the large cross-

section, we only implement one time-series split of the data at the root node (i.e., the first cutpoint

of the tree) for illustration. The P-Tree model will search over all possible cutpoint candidates of the

macro variables and choose the one optimizes the factor pricing error. The split criterion of the first

time-series split is defined as

L(ck) =

NA∑
t=1

Nt∑
i=1

(ri,t − βA(zi,t−1)fA,t)
2 +

NB∑
t=1

Nt∑
i=1

(ri,t − βB(zi,t−1)fB,t)
2 , (14)

where the cutpoint candidate ck partitions the time series of data to state A and B, for example,

high or low inflation.5 Each state has number of months NA and NB correspondingly. Comparing

to the cross-section split criterion in equation (10), the time-series split criterion is the total pricing

loss of two time periods, with two corresponding factors fA,t and fB,t.

In this illustration, after searching for the optimal time series cutpoint, all subsequent growth

only evaluates the cross-section cutpoints. Note that any further split on either child of the root node

only depends on stock returns observations on one side. The split criterion is no longer iterative

to the first split but still works for the entire time series on the one side. with both time-series and

cross-section candidates for splits, the model can also inform how macroeconomic variables interact

with firm characteristics.

2.6 Factor Pricing and Boosted P-Trees

Because of the ability to accommodate panel data and build conditional leaves, as well as the

global criteria for greater performance and interpretability, P-Trees offer effective ways of building

a (multi-)factor pricing model. In the baseline model, we already see that a P-Tree can generate

the single-factor SDF. The multi-period nature of leaf returns allows P-Trees to better utilize panel

data of asset returns for estimating conditional factor loadings, a step required when imposing the

5Our empirical analysis in Section 3 shows that Inflation is indeed the most important macroeconomic variable that
differentiates factor models in two states.
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no-arbitrage condition. Using no-arbitrage as a global split criterion in turn ensures good out-of-

sample performance of the SDF derived from the P-Tree and the usefulness of the factor model. The

two innovations in the P-Tree framework together makes it well-suited for asset pricing.

To strengthen the asset pricing performance, we can further use boosting to obtain a multi-

factor P-Tree model. The idea is to combine a group of weak learners for better fitting and predic-

tion (Freund and Schapire, 1997). The boosting ensemble method grows a list of trees iteratively

where each tree fits the residual of all previous trees. They together form a strong learner, and the

final prediction is the (weighted) sum of each tree outcome. For finance applications, Rossi and

Timmermann (2015) use boosted regression trees to estimate conditional covariance for ICAPM.

We use the same strategy to build the sum of the P-Trees with each P-Tree giving a factor.

Specifically, the boosting P-Tree iteratively creates additional factors to fit the unexplained pricing

errors of all previous factors. Applying the boosting scheme to P-Tree establishes a sequence of

factors to form the SDF, resulting in a multi-factor asset pricing model. The steps are as follows:

1. The first factor f1,t is generated by the standard P-Tree on excess returns {ri,t}, as discussed

in section 2.3. The residual of the first factor is ε(1)i,t = ri,t − β(zi,t−1)f1,t, where the regression

coefficients are the OLS estimator.

2. The second factor generated from fitting the residual ε(1)i,t instead of the original return ri,t. The

tree growing steps are the same as section 2.3 except replacing the split criterion of equation

(10) by the following one

L(ck) =
T∑
t=1

Nt∑
i=1

(
ε
(1)
i,t − β2(zi,t−1)f2,t

)2
. (15)

Again, the new residual is defined as ε(2)i,t = ε
(1)
i,t − β2(zi,t−1)f2,t.

3. The third factor f3,t proceeds similarly to fit the residual of the first two trees {ε(2)i,t }, with the

corresponding split criterion

L(ck) =

T∑
t=1

Nt∑
i=1

(
ε
(2)
i,t − β3(zi,t−1)f3,t

)2
. (16)
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4. Repeating the procedures above K times, each tree fits the residual of all previous trees to

generate all K factors.

In Section 3.3 when we apply the framework to U.S. equities, we set the number of factors

K = 3. The three generated factors can be listed with decreasing importance order as [f1,t, f2,t, f3,t].

Generating additional tree factors is similar to generating additional components in the principal

component analysis. Below is the three-factor model with time-varying factor loadings. Any gen-

eral application of this three-factor model requires re-estimating factor loadings.

E(ri,t) = β̂1(zi,t−1)f1,t + β̂2(zi,t−1)f2,t + β̂3(zi,t−1)f3,t (17)

Another natural application of the boosting is to create an augmented factor model. One can

start with a common benchmark model such as CAPM or Fama-French 3-factor model. Then use

the boosting P-Tree to fit the benchmark model’s pricing errors directly. Tree factors developed

beyond the benchmark model are supposed to explain “orthogonal” information from factor model

residuals. We later report results of multi-factor P-Trees with and without the CAPM benchmark.

3 Empirical Application: A Study of U.S. Equities

3.1 Data

We apply the standard filters (e.g., used in Fama-French factor construction) to the universe

of U.S. public equities: (1) We include only stocks listed on NYSE, AMEX, or NASDAQ for more

than one year; (2) we use those observations for firms with a CRSP share code of 10 or 11; (3) we

exclude stocks with negative book equity or negative lag market equity. For each stock, we use 61

firm characteristics with monthly observations, covering six major categories: momentum, value,

investment, profitability, frictions (or size), and intangibles. Table A.1 lists these input variables

whose computation follows Feng et al. (2020). To construct regression trees for multiple periods of

data, we standardize the firm characteristics cross-sectionally in the range [−1, 1].6

6For example, the market equity in 2019 December is uniformly standardized in the range of [−1, 1]. The firm with the
lowest market equity is -1, and the firm with the highest market equity is 1, all others distributed uniformly in between.
Therefore, this uniform standardization transforms the data onto [−1, 1] every month. If a firm has missing values for
some characteristics, the imputed values are 0, implying the firm is not important in security sorting.

19

Electronic copy available at: https://ssrn.com/abstract=3949463



In addition, we use ten macroeconomic variables as in Feng and He (2019) to demonstrate

time-series splits. Table A.2 summarizes the macroeconomic variables, which includes market tim-

ing macro predictors, bond market predictors, and aggregate characteristics for S&P 500. We stan-

dardize these macro predictor data by the historical percentile numbers for the past ten years. For

example, inflation greater than 0.7 implies that the current inflation level is higher than 70% of ob-

servations during the past decade. This rolling window data standardization is useful when we

compare the predictor level to detect different macroeconomic regimes.

Our sample period goes from January 1981 to December 2020. We use the 20-year period from

1981 to 2000 for training and the 20-year period from 2001 to 2020 for testing. The average and

median monthly numbers of stocks are 4,667 and 4,450 in the train sample, and 3,953 and 3,791 in

the test sample. Our P-Tree is flexible to handle such an imbalanced data panel, while it is difficult

to implement standard observable or latent factor models on individual stock return data.

3.2 Implementation of P-Trees

We apply P-Tree to generate leaf basis portfolios and the stochastic discount factor to fit cross-

sectional individual stock returns. We plot our baseline P-Tree in Figure 4. The tree structure shows

the splitting orders S#, selected splitting characteristics, and the cross-sectional cutpoints. Before the

first split, the tree grows from the root node, representing the market portfolio for all stocks (N1).

The leaf basis portfolios at each layer of the tree are numbered with N#. The numbers printed in the

leaves are the median number of stock observations in the monthly updated leaf basis portfolios.

We require the minimum number of stocks in a leaf basis portfolio, one natural tuning parameter

to limit the tree size and avoid over-fitting, to be 50, which is reasonable for fitting a multi-period

tree model. This implies that in our training sample, the tree stops growing after 22 splits and

generates 23 leaf basis portfolios. The number of leaf basis portfolios is similar to the commonly

used ME-B/M 25 portfolios, so we can compare performance values in the same variance scale.

As seen in Figure 4, endogenously the P-Tree first splits along the trading volume volatility

(STD DOLVOL) at 0.2 (60% quantile). After the split, 60% of the stocks go to the left leaf (labeled N2),

and 40% go to the right (N3). The second split is along the industry-adjusted market equity (ME IA)

at 0.2 on the right leaf (N3), while the third split is on 3-year long-term reversal (MOM36M) on the left
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one (N2). The P-Tree allows one to evaluate and visualize the interaction of characteristics. ME IA

is valuable for high STD DOLVOL stocks, while MOM36M is valuable for low STD DOLVOL stocks.

Relative to other machine learning methods, P-Tree provides a more precise mapping for gen-

erating these characteristic-managed portfolios. Figure 5 reports the corresponding partitions, to-

gether with the average returns and Sharpe ratios for leaf basis portfolios. These performance gaps

show the usefulness of splitting the cross-section via the interaction of characteristics. The top right

plot in Figure 5 further splits N2 by STD DOLVOL and MOM36M. The bottom plot splits N6 by ATO.

We can also see the clustering patterns for these leaf basis portfolios. The market portfolio is

partitioned into four portfolios (N4 - N7) at the tree depth of three, each group of individual stocks

with similar characteristic exposures. The return-risk relationship of the four portfolios, as well as

their mean-variance efficient portfolio (MVE3), is plotted in Figure 6. Further splitting these four

portfolios, we have 23 leaf basis portfolios at the tree depth 6. We find those great-grandchild leaf

basis portfolios (in a light color) labeled with (N4+ - N7+) cluster around their great grandparent

nodes (in dark color). The mean-variance efficient portfolio from a 6-depth tree produces a higher

Sharpe ratio than a 3-depth tree, while both are higher than the market portfolio. These perfor-

mances are robust for the out-of-sample plot in Figure 7.

Complementing our main result P-Tree in Figure 4, we also provide a market-adjusted P-Tree

shown in Figure A.1. Section 2.6 shows how we create a P-Tree by controlling a benchmark factor

model, such as CAPM or Fama-French three factors. By controlling the market factor, we find the

market-adjusted P-Tree structure is quite different from P-Tree and offers 18 basis portfolios. This

set of market-adjusted test assets show quite different performance in Table 1 and 3.

3.3 Asset Pricing Performance

Performance metrics. We follow Feng et al. (2020) to include multiple performance metrics. Total

R2 are Pricing Error R2 are designed for evaluating economic asset pricing performance for vari-

ation in both time-series and cross-section. In contrast, Predictive R2 is designed for measuring

statistical model fitness and the model forecasting power.
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1.

Total R2 = 1−
1
NT

∑T
t=1

∑N
i=1 (ri,t − r̂i,t)2

1
NT

∑T
t=1

∑N
i=1 r

2
i,t

, (18)

where r̂i,t = β̂ᵀi,tft. Total R2 represents the fraction of realized return variation explained by

the factor model-implied contemporaneous return, aggregated over all assets and all periods.

2.

Predictive R2 = 1−
1
NT

∑T
t=1

∑N
i=1 (ri,t − r̂i,t)2

1
NT

∑T
t=1

∑N
i=1 r

2
i,t

, (19)

where r̂i,t = β̂ᵀi,tλf . The risk premia λf can be the historical average of the tradable factor

returns. Predictive R2 summarizes the predictive performance by the factor model-implied

return forecasts, aggregated over all assets and all periods.

3.

Pricing Error R2 = 1−
1
N

∑N
i=1

(
1
T

∑T
t=1(Ri,t − R̂i,t)

)2
1
N

∑N
i=1

(
1
T

∑T
t=1Ri,t

)2 , , (20)

where R̂i,t = β̂ᵀi,tft. The Pricing Error R2 represents the fraction of the squared unconditional

mean returns that is described by the common factor model, aggregated over all assets7.

Comparing asset pricing models. First of all, we report the individual stock pricing performance,

Total R2 and Predictive R2, in Table 1. Panel A shows P-Tree models with different number of

factors, and Panel B shows the market-adjusted P-Tree model. Panels C and D provide results for

Time-Series split factors, which are discussed in Section 3.4. In Panel E, we compare P-Tree models

with standard factor models such as CAPM, Fama-French factor models of (Fama and French, 1993,

2015), and the Q-factor model of Hou et al. (2015), and recently published latent factor models, such

as RP-PCA of Lettau and Pelger (2020) and IPCA of Kelly et al. (2019).

TotalR2 is about the cross-sectional return explanatory evaluation. Our P-Tree and the market-

adjusted P-Tree show increasing positive performance for adding additional boosted factors. Sec-

ond, the five-factor P-Tree and market-adjusted P-Tree outperform almost all models for pricing

individual stock returns in terms of Total R2. Predictive R2 is equivalent to the out-of-sample R2

7This measure is equivalent to the XS-R2 used in Chen et al. (2020)
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used in the return predictability literature, such as Gu et al. (2020), but demonstrates the return

predictive power out of an asset pricing factor model. Both five-factor P-Tree and market-adjusted

P-Tree produce positive numbers for in-sample and out-of-sample analysis. Notably, another la-

tent factor model, IPCA of Kelly et al. (2019) shows strong performance for pricing and predicting

individual stocks because of their direct objective function.

Second, we also investigate the asset pricing performance for the average returns of multiple

sets of portfolios: Fama-French ME-B/M 5× 5 portfolios, 49 industry portfolios, 23 leaf basis port-

folios generated by P-Tree, and 18 leaf basis portfolios generated by market-adjusted P-Tree. The 23

leaf basis portfolios generated by P-Tree are displayed in Figure 4, and the 18 leaf basis portfolios

generated by market-adjusted P-Tree are displayed in Figure A.1. The pricing error measure is the

Pricing Error R2 in Equation 20, which are calculated using forty years of data.

Consistent with prior literature, observable factor models (CAPM, FF3, FF5, and Q4) show

great explanatory power for the cross-sectional average returns for the first three sets of test port-

folios. Among the latent factor models, P-Tree, market-adjusted P-Tree, and RPPCA are almost as

good. These factor model can explain more than 80% of the average returns, resulting in economi-

cally minor alpha scales. Note that though IPCA performs well for pricing individual stocks, it does

not work well on pricing average returns for portfolios. However, our P-Tree model works well on

pricing both individual stocks and basis portfolios.

The last column in Table 1 reveals that the 18 market-adjusted leaf basis portfolios are difficult

to price using well-known observable or latent factor models, as evidenced by the large negative

Pricing Error R2. These 18 portfolios are generated by controlling the market factor, and therefore

cannot be explained by CAPM. However, our market-adjusted P-Tree models explain their returns.

Investment performance, P-Tree factors, and test portfolios. We next compare the investment

performances of these observable or latent factors in various models. We develop two investment

strategies for each factor model: the 1/N equally-weighted portfolio and the mean-variance efficient

portfolio.8 Table 2 reports the average returns, Sharpe ratio, Jensen’s alpha, and the t-statistic of

alpha for both over twenty years.

8We follow Equation 9 to calculate portfolio weights and re-scale their sum to one.
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Again, P-Tree and the market-adjusted P-Tree show increasing positive performance for adding

additional boosted factors. For the in-sample analysis, the 1/N strategy of P-Tree5 in panel A gen-

erates a 2.42% monthly average return, a highly significant 1.84% alpha, and a 1.98 annualized

Sharpe ratio, where the MVE strategy even provides higher results. For the out-of-sample analysis,

this 1/N strategy of P-Tree5 delivers a 1.44% monthly average return, a highly significant 1.00%

alpha, and a 1.25 annualized Sharpe ratio. These numbers are higher than the 1/N strategies of all

other factor models, including Fama-French five factors and IPCA. These investment performance

results are higher for the MVE strategy in both in-sample and out-of-sample analyses.

Finally, given that adding boosted factors is useful for pricing, prediction and investment, we

investigate their additional investment information. Can these P-Tree factors be explained by ob-

servable factor models? Moreover, boosted factors are generated by shallow trees with a maximum

3 layers, and thus we can interpret these factors as interaction factors by first two splits.9 The row

names are the first two spitting characteristics of the corresponding tree. We regress each P-Tree

factor on benchmark factor models to evaluate their alphas and summarize results in Table 3.

We find that almost all of our P-Tree factors show economically and statistically significant

alphas against benchmark models. For example, the factor BM IA-ME in Panel B is generated by

the market-adjusted P-Tree and shows high alphas against the Fama-French 3 factors and the Q-

Factor model. The MOM12M-ME factor in Panel A shows way higher alphas over the standard

momentum factor of Carhart (1997). These boosted performances may come from the interaction of

these characteristics, which we further investigate in Section 3.5.

Finally, note that the empirical literature primarily use portfolios (Rt in Equation 4) as test as-

sets instead of individual stocks when evaluating asset pricing models. These test assets are usually

non-overlapping portfolios that partition the the stock universe. However, standard test assets such

as Fama-French ME-B/M 5 × 5 portfolios or other univariate/bivariate sorted portfolios may fail

to span the efficient investment frontier. For data-driven test asset construction, Ahn et al. (2009)

uses clustering to construct test assets by stock correlations, and Bryzgalova et al. (2020) prune the

decision tree by reducing test assets created by conditional sorting. However, if one wants to apply

decision trees to generate test assets, the same tree has to work for every period. This issue mo-

9We have a detailed discussion about interaction factors in Section 2.4.
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tivates our P-Tree design that allows dissecting the cross-section relationship for multiple periods

from a panel data of asset returns. The resulting leaf portfolios, for which the 18 market-adjusted

leaf basis portfolios constitute one example, naturally serve as test assets for various models.

Test assets can be evaluated based on their pricing difficulty or investment performance. Given

almost all models fail the asset pricing test of Gibbons et al. (1989), we consider the investment

performance of test assets to see if they can span the efficient investment frontier. In Panel C of

Table 3, We also report the 1/N and MVE strategies constructed by ME-B/M 5 × 5 portfolios, 49

Industry portfolios, 23 leaf basis portfolios, and 18 market-adjusted leaf basis portfolios. Only P-

Tree and market-adjusted P-Tree portfolios show consistently significant performances as test assets

in out-of-sample studies. These are strong evidence that the 23 and 18 leaf basis portfolios are valid

and useful test assets that span the efficient frontier of the asset return space. Moreover, we also

note that leaf portfolios from P-Trees are good test portfolios because the leaves are not near empty,

as is the case in many other tree-based models.

3.4 Trees for Panel Data and Splitting the Time Series

Earlier studies have shown empirical evidence about time-varying betas and alphas during

bull and bear markets (Fabozzi and Francis, 1977). P-Trees allow splitting in the time series dimen-

sion and provides an alternative investigation to factor-beta estimation with regime-switching.

We consider building a P-Tree combining time-series and cross-sectional splits. Given the short

history of observations, we only consider time-series split for the first cutpoint. Without further

cross-sectional splits, the first split determines the optimal macro predictor for regime-switching.

After a complete search among all ten macro predictors and possible cutpoints, our model cuts

inflation at 50% quantile, based on a sample from 1981 to 2000. The time-series P-Tree structure is

displayed in Figure 8. We see the left and right branches hold different tree structures in high and

low inflation periods, which implies the tree model adapts to different macro conditions.

Important characteristics for high and low inflation periods are reported in Figure A.2 The

time-series split variable importance by selection probability is in Table 4. We find the high and

low inflation periods have different characteristic importance. The long-term reversal (MOM60M)

and 1-year seasonality (SEAS1A) are more important for the high inflation periods, while trading
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volume (DOLVOL) and volume volatility (STD DOLVOL) are more important for the low inflation

periods. Inflation can be a lead regime-switching indicator, but these equity characteristics are

valuable information to differentiate the cross-section.

Finally, the asset pricing results for the time-series P-Tree model are summarized in Panel C

and D of Table 1, and their investment gains are reported in Table 2. In short, compared to standard

P-Tree models, the 5-factor time-series P-Tree models in panels C and D offer higher Total and Pre-

dictiveR2 values. Also, this time-series P-Tree model provides higher and more stable Pricing Error

R2 to different test portfolios. For the recent twenty years, the 1/N equally-weighted portfolio for

these five time-series tree factors provides a monthly average return of 2.78%, a highly significant

alpha of 2.5%, and an annualized Sharpe ratio of 1.78. Apparently, by splitting models for high

and low inflation periods, the investment performance improves tremendously. By incorporating

regime-switching and time-series splits, our P-Tree model can guide market-timing in the equity

market in practice, in addition to characteristic-based portfolio construction.

3.5 Nonlinearity and Interactions Revealed in P-Tree Models

One application for the P-Tree model is to exploit the nonlinearity and interaction of character-

istics. CART might be the only nonlinear machine learning method that displays these interactions

in the tree diagram and nonlinear patterns in the partition plot. Examples can be found on Figure

4 and 5. For the tree diagram, the long-short portfolio is to have a long position on one leaf and

a short position on another one. For the partition plot, the long-short portfolio is to have a long

position on one partition and a short position on another one. The economic theory and empirical

literature determine the long and short leg directions for anomalies, such as small-minus-big or

high-minus-low.

Trading strategies using nonlinearity and interaction. We collect the long-short direction of each

characteristic from the literature and create four different long-short characteristic-based portfolios,

as shown in Figure A.3. Specifications (a) and (b) are the standard univariate-sorted long-short

portfolios. Sorting the stocks in four quarters rather than two halves increases the return spread

of long-short factors. Specifications (c) and (d) are interaction portfolios generated by our P-Tree
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and market-adjusted P-Tree models, which are essentially sequentially sorted long-short portfolios.

We restrict all splitting cutpoints to be 0 (50%) for this example, and the training sample fits these

interaction portfolios from 1981 to 2000.

We summarize the number of significantly positive cases of average returns and Jensen’s al-

phas in Table 5 panel A and B for 5% and 10% significance levels. First of all, “Uni-Sort 4×1” has

more significant factors than “Uni-Sort 2×1” in the training, test, and entire samples. Second, there

are fewer significant factors in the test sample than the training sample due to the post-publication

bias (McLean and Pontiff, 2016). Probably due to estimation error, the numbers of significant factors

are higher for the entire sample.

Third, our interaction factors have more “average-significant” cases than “Uni-Sort 4×1” in the

recent twenty years and the entire sample. Our market-adjusted interaction factors also have more

“alpha-significant” factors than “Uni-Sort 4×1.” Out of 61 factors for forty years, the interaction

specification increases the significant factors from 27 to 36, and the market-adjusted interaction

specifications increase from 36 to 48. These findings are consistent with the goals of P-Tree and

market-adjusted P-Tree models.

In Table 5 panel C, we report the cross-sectional quantile numbers of the average returns and

Jensen’s alphas. We find those “Uni-Sort 4×1” factors produce high median (50%) average returns

and Jensen’s alphas in the first twenty years. However, the returns from these factors have de-

creased dramatically in the recent twenty years. Conversely, the interaction factors have higher

median average returns and alphas in the recent twenty years and the entire sample. The market-

adjusted interaction factors show consistently positive 25% values for alphas in every case. In sum-

mary, utilizing information about interactions might be a solution to the post-publication decay for

risk premia of anomalies.

Further discussion of interaction portfolios. To further understand how these interaction portfo-

lios behave, six examples are reported in Table 6 and Figure A.4. The “Uni-sort 4x1” portfolios show

significant average returns and alphas, but the interaction portfolios increase these results. For ex-

ample, the “Uni-sort 4x1” portfolio Standardized Unexpected Earnings (SUE) of Rendleman Jr et al.

(1982) is persistently strong. Once we create an interaction factor with R&D to Market (RMD) and
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Market Equity (ME), the results almost double. RMD is useful for the short leg of SUE, and ME is

helpful for the long leg of SUE. We show the average returns for leaf portfolios during splitting in

Figure A.4 and find decreasing and increasing numbers in the corresponding direction.

Many factors do not show significant risk premia or alphas and are deemed not replicable.

However, once we include the “correct” control or interaction, some of these factors can be resur-

rected.10 For example, we find “Uni-sort 4x1” factor Change in Profit Margin (CHPM) of Soliman

(2008) has almost zero premium. Interacting with R&D to Sales (RD SALE) on the short leg and Dol-

lar Trading Volume (DOLVOL) on the long leg, this factor earns 47 basis points for monthly average

returns and a 51 basis point for alpha. It is not surprising that the greedy algorithm of P-Tree helps

to lower the short leg and raise the long leg for the in-sample analysis. Consistent results in the

out-of-sample in Table 6 show strong evidence for our P-Tree model.

Interpretability and robustness. Observing feature interactions gives P-Tree models great inter-

pretability. Nonlinear tree structure and interaction of characteristics are displayed when the de-

cision tree continues the split to further layers. However, these patterns gleaned from individual

P-Trees are only helpful if the P-Tree model can avoid overfitting. Following Section 2.4, we use

Random Forest to check if a P-Tree model indeed splits using similar characteristics and is not re-

flections of noise in the data.

Figure 9 summarizes the feature importance in a random forest of P-Trees. According to (13),

a negative value implies the model has an average high asset pricing performance value when we

include this characteristic rather than dropping it. We also conduct a two-sample t-test using the

bootstrap samples and display those 5% significant characteristics with a deeper color. Only four

characteristics show statistical significance out of 61 of them. The in-sample results identify the

significant characteristics as volume volatility (STD DOLVOL), long-term reversal (MOM60M), market-

adjusted market equity (ME IA), and 1-year seasonality (SEA1A). These four characteristics also

show asset pricing improvement for the recent twenty years.

Table 4 panel A summarizes the selection frequency of characteristics in top splits, based on

(12). We find that volume volatility (STD DOLVOL) has a 73% chance of being the first splitting

10Related is Asness et al. (2018) that resurrects the size factor by controlling for the junk factor.
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characteristic once the bootstrap sample contains it. The other important characteristics are long-

term reversal (MOM60M), trading volume (DOLVOL), and market-adjusted market equity (ME IA).

Overall, the two different metrics reveal the same small set of important features for splitting

the data. Given that volume volatility (STD DOLVOL), long-term reversal (MOM60M), and market-

adjusted market equity (ME IA) are also the characteristics for the first split in the single-factor

(Figure 4 and 8) or boosted multi-factor P-Trees, we know that P-Tree models behave similarly to

a random forest ensemble and are not overfitted. The nonlinearities and interactions revealed in

P-Tree models provide useful information but are difficult to see in ensembles.

4 Conclusion

We introduce P-Tree — a class of tree-based models for panel data analysis, which comple-

ments traditional classification and regression tree models by relaxing their common i.i.d. assump-

tion and uses global criteria to guide cutpoint choices. When applied to a panel data of asset returns,

P-Tree partitions the cross-section of the asset universe and generates a time-series factor model, ef-

fectively combining regression trees and latent factor models while allowing both time-series and

cross-sectional splits. We further discuss boosting trees for multiple factors, random forest for fea-

ture importance, and nonlinear interactions for latent factor interpretation. Finally, we apply P-Tree

to explain the cross-sectional variation of U.S. equity returns and achieve outstanding performance

and profitable investments.

P-Tree models can be used beyond asset pricing and investment to analyze large panel data

in general. Not only is the latent factor generation design easy to customize for different data-

generating processes, the framework can be flexibly adopted as a supervised machine learning

algorithm to have split criteria defined by the objective function in specific domain studies. P-

Tree also admits many potential promising extensions. For example, future works can integrate the

time-series split and cross-sectional split in the split criteria for every partition; one can conveniently

model penalty terms or prior information a regularized version of P-Tree and Bayesian P-Tree; one

can adjust the split criterion for portfolio optimization to create a minimum variance portfolio.11

11To facilitate more applications of P-Tree in economic, finance, and all other studies, we publish the R package
TreeFactor for P-Trees on the authors’ websites.

29

Electronic copy available at: https://ssrn.com/abstract=3949463



References

Ahn, D.-H., J. Conrad, and R. F. Dittmar (2009). Basis assets. The Review of Financial Studies 22(12),

5133–5174.

Ang, A. and A. Timmermann (2012). Regime changes and financial markets. Annu. Rev. Financ.

Econ. 4(1), 313–337.

Arnett, F. C., S. M. Edworthy, D. A. Bloch, D. J. Mcshane, J. F. Fries, N. S. Cooper, L. A. Healey, S. R.

Kaplan, M. H. Liang, H. S. Luthra, et al. (1988). The american rheumatism association 1987 revised

criteria for the classification of rheumatoid arthritis. Arthritis & Rheumatism: Official Journal of the

American College of Rheumatology 31(3), 315–324.

Asness, C., A. Frazzini, R. Israel, T. J. Moskowitz, and L. H. Pedersen (2018). Size matters, if you

control your junk. Journal of Financial Economics 129(3), 479–509.

Avramov, D. (2004). Stock return predictability and asset pricing models. The Review of Financial

Studies 17(3), 699–738.

Avramov, D., S. Cheng, and L. Metzker (2021). Machine learning versus economic restrictions:

Evidence from stock return predictability. Management Science, accepted.

Bali, T. G., D. Huang, F. Jiang, and Q. Wen (2021). Different strokes: Return predictability across

stocks and bonds with machine learning and big data. Technical report, Georgetown University.
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Figure 5: Partition Plots for Figure 4

This diagram visualizes the partition for the first five splits of the tree structure in Figure 4. For example,
the first split (S1) is implemented with STD DOLVOL on the entire stock universe, and the second split is
implemented with ME IA on the high STD DOLVOL portfolios. The space area for each partition represents the
corresponding proportion of the stock universe. We also provide the monthly average return and annualized
Sharpe ratio for each leaf. The overlayed arrows represent the next split is implemented on the partitioned
area from the previous partition.
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Figure 6: Return-Risk Clustering for Leaf Basis Portfolios

Following the tree structure in Figure 4, this figure plots the monthly average return and standard deviation
for leaf basis portfolios. Labels N4, N5, N6, and N7 represent those four leaf basis portfolios at depth 3.
Labels N4+, N5+, N6+, and N7+ represent corresponding leaf basis portfolios at depth 6. We also show our
generated SDF portfolios at depth 3 and depth 6 labeled with MVE-3 and MVE-6. For the reference lines, we
have included the annualized Sharpe ratio 0.3, 0.6, and 0.9.
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Figure 7: Out-of-Sample: Return-Risk Clustering for Leaf Basis Portfolios

This figure shows the out-of-sample performance for all those portfolios plotted in Figure 6. The figure
format follows Figure 6.
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Figure 9: Out-of-Bag Characteristics Significance

This figure reports the characteristic significance by the out-of-bag ensembles from the random forest of 500
trees. The train sample period is 1981-2000, and the test sample period is 2001-2020. The variable importance
measure is defined as the average increase percentage of loss function by including a characteristic in a tree
model. A negative value implies that including this characteristic reduces loss and is useful. The dark color
bars on the left are significant characteristics at the 5% level by the two-sample t-test. The description of
characteristics are listed in Table A.1.
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Table 1: Asset Pricing Performance

This table reports the performances of asset pricing models. The ‘Tot‘ (total R2 %) in Equation 18 and ‘Pred‘
(predictiveR2 %) in Equation 19 are goodness of fitness measures for individual stock returns. The in-sample
period is from 1981 to 2000, and the out-of-sample period is from 2001 to 2020. Panel A shows results for
the Panel Tree model with #factors. Panel B shows the market-adjusted P-Tree, with the Market factor as
the first factor and others generated by boosting P-Trees. Panel C and D demonstrate the same performance
when applying the time-series split in Section 2.5, while Panel E provides comparisons for commonly used
benchmark models. We also report the Pricing ErrorR2 % in Equation 20, using the factor models in the rows
to price the test asset portfolios in the columns. Pricing Error R2 values are estimated using the entire sample
from 1981 to 2020. The “P-Tree23” indicates the 23 basis portfolios generated by the P-Tree in Figure 4, and
the “Ma-PT18” indicates the 18 basis portfolios generated by the market-adjusted P-Tree in Figure A.1.

Individual Stocks Portfolios
In-Sample Out-of-Sample

Tot Pred Tot Pred FF25 Ind49 P-Tree23 Ma-PT18

Panel A: Panel Tree Factors

PTree1 8.46 -0.04 12.38 0.29 88.0 82.2 97.1 -250.3
PTree5 11.63 0.37 15.78 0.38 68.1 15.5 77.0 -70.6

Panel B: MKT Adj. Panel Tree Factors

MaPTree2 9.86 0.03 12.80 -0.25 79.2 92.2 59.2 79.2
MaPTree5 11.60 0.24 16.27 0.18 77.9 76.9 86.0 61.4

Panel C: Time-Series Split - Panel Tree Factors

TS-PTree1 9.16 0.00 13.22 0.28 65.8 17.5 71.1 -113.9
TS-PTree5 12.09 0.57 16.21 0.09 76.1 35.2 81.1 6.5

Panel D: Time-Series Split - MKT Adj. Panel Tree Factors

TS-MaPTree2 10.39 0.23 14.01 -0.20 71.6 84.6 49.6 56.9
TS-MaPTree5 12.12 0.49 16.53 0.02 86.8 58.4 83.1 51.2

Panel E: Others

CAPM 6.86 0.05 11.18 0.29 91.2 87.7 93.5 -122.5
FF3 9.92 0.19 14.01 0.38 94.8 84.9 92.8 -110.1
FF5 10.34 0.24 14.57 0.38 96.0 77.9 91.6 -25.9
Q4 10.07 0.30 14.49 0.34 95.7 81.7 88.6 31.8
RPPCA 10.31 0.03 14.44 0.36 77.8 57.6 84.7 -258.7
IPCA 12.54 1.23 16.46 0.87 -11.7 -69.1 -28.9 -281.7
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Table 2: Investment Performance

This table reports the investment performance of the factor models. The table format is similar to Table 1. We
report the average returns, Sharpe ratio, and monthly Jensen’s alpha % for the equally-weighted (1/N) and
mean-variance efficient (MVE) portfolios. For t-statistics *, **, and *** indicate significance at the 10%, 5%,
and 1% levels, respectively.

In-Sample (1981-2000) Out-of-Sample (2001-2020)

1/N MVE 1/N MVE
AVG SR α AVG SR α AVG SR α AVG SR α

Panel A: Panel Tree Factors

PTree1 1.14 0.66 0.34 1.14 0.66 0.34 1.41 0.64 0.48 1.41 0.64 0.48
PTree5 2.42 1.98 1.84*** 4.44 3.24 4.22*** 1.44 1.25 1.00*** 2.18 1.12 2.36***

Panel B: MKT Adj. Panel Tree Factors

MaPTree2 3.24 1.52 2.55*** 4.85 1.56 4.19*** 0.89 0.49 0.48 1.05 0.39 0.79
MaPTree5 2.34 1.78 1.70*** 4.97 3.74 4.74*** 1.06 0.95 0.64*** 2.63 1.71 2.46***

Panel C: Time-Series Split - Panel Tree Factors

TS-PTree1 1.11 0.71 0.36* 1.11 0.71 0.36* 1.20 0.63 0.37* 1.20 0.63 0.37*
TS-PTree5 4.18 2.43 3.53*** 7.60 3.59 7.22*** 2.78 1.78 2.50*** 4.25 2.02 4.15***

Panel D: Time-Series Split - MKT Adj. Panel Tree Factors

TS-MaPTree2 3.25 1.14 2.56*** 3.67 1.16 3.00*** 1.14 0.54 0.98** 1.22 0.52 1.14**
TS-MaPTree5 2.67 1.38 1.98*** 2.96 1.97 2.47*** 1.15 0.77 0.78*** 1.58 1.24 1.35***

Panel E: Others

FF3 0.38 0.85 0.20*** 0.55 1.17 0.41*** 0.28 0.40 0.00 0.21 0.29 -0.06
FF5 0.38 1.34 0.33*** 0.46 1.47 0.39*** 0.25 0.59 0.12 0.26 0.62 0.12*
Q4 0.52 1.40 0.36*** 0.58 1.95 0.52*** 0.29 0.77 0.16*** 0.22 0.69 0.18***
RP-PCA 0.48 0.21 -0.63*** 2.09 1.64 1.72*** 0.91 0.51 0.16 0.93 0.47 0.21
IPCA 1.85 1.96 1.40*** 2.84 4.94 2.80*** 1.40 1.22 0.91*** 1.78 2.81 1.67***
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Table 3: Factor Spanning Alpha Test

This table reports the monthly alphas in basis point and their significance for the factor spanning test. Panel
A shows results for each factor of the Panel Tree model in Table 1, and Panel B shows the market-adjusted
tree factors. We regress each of the factors in the rows against a factor model in the columns. We name the
factors by the first two splitting characteristics in the tree structure for the P-Tree factor, which can also be
viewed as interaction factors. We also show the mean-variance efficient (MVE) and 1/N portfolios for five
factors. Panel C provides the same results for different test assets. Notably, “PT23” represents the 23 basis
portfolios from our P-Tree model in Figure 4, and “Ma-PT18” is the 18 basis portfolios from our market-
adjusted P-Tree model in Figure A.1. For t-statistics *, **, and *** indicate significance at the 10%, 5%, and 1%
levels, respectively.

In-Sample Out-of-Sample Entire-Sample

FF3 Q4 FF3 Q4 FF3 Q4

Panel A: Panel Tree Factors

P-Tree1 45*** 65*** 39* 65*** 38*** 67***
OP-ME 170*** 61 137*** 55 156*** 59**
BM IA-DOLVOL 44* 61** 116*** 124*** 85*** 101***
MOM12M-ME 470*** 392*** 261*** 149*** 364*** 252***
ME-STD DOLVOL 36* 9 -7 -21 13 -8
MVE(5-factor) 370*** 317*** 257*** 179*** 314*** 239***
1/N(5-factor) 153*** 118*** 109*** 74*** 131*** 94***

Panel B: MKT Adj. Panel Tree Factors

RVAR FF3-STD TURN 435*** 300*** 148** 18 275*** 138***
BM IA-ME 57*** 71*** 88*** 112*** 81*** 104***
MOM12M-ME IA 227*** 157*** 149*** 65* 182*** 87***
ME-CASH 102*** 130*** -21 17 38*** 70***
MVE(5-factor) 431*** 376*** 257*** 216*** 345*** 291***
1/N(5-factor) 164*** 131*** 73*** 43*** 115*** 80***

Panel C: Other Test Assets

MVE-FF25 281*** 253*** 129*** 68* 192*** 150***
MVE-IND49 329*** 323*** 47 77 70* 89**
MVE-PT23 45*** 65*** 39* 65*** 38*** 67***
MVE-Ma-PT18 435*** 300*** 148*** 18 275*** 138***
1/N-FF25 -5 -10* 0 3 -1 0
1/N-IND49 -20** -39*** 10 6 32* 40**
1/N-PT23 -1 1 12* 21*** 7* 13***
1/N-MAPT18 79*** 59*** 40*** 14* 58*** 32***
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Table 4: Characteristics Importance by Top Splits

This table reports the most frequently selected characteristics from the random forest of 500 trees, which can
be used to assess the variable importance. The random forest ensemble design is discussed in Section 2.4. The
“Top 1” rows only count the first split for 500 trees. The “Top 2” or “Top 3” rows only count the first two or
three splits. The numbers reported are the selection frequency for these top characteristics selected out of the
500 ensembles. Panel A uses the entire train sample, and the other panels report the mostly characteristics
chosen for high and low inflation periods from 1981 to 2000. The description of characteristics is listed in
Table A.1.

Panel A: Entire Training Sample (1981-2000)

1 2 3 4 5

Top1 STD DOLVOL MO60M DOLVOL ME IA LGR
0.73 0.64 0.61 0.33 0.29

Top2 STD DOLVOL DOLVOL MMO60M ME IA BETA
0.78 0.73 0.72 0.61 0.44

Top3 STD DOLVOL MMO60M DOLVOL ME IA ATO
0.78 0.76 0.73 0.64 0.52

Panel B: High Inflation Panel C: Low Inflation

1 2 3 1 2 3

Top 1 MOM60M DOLVOL ME IA ME IA DOLVOL ME
0.53 0.44 0.42 0.56 0.42 0.41

Top 2 MOM60M DOLVOL ME IA ME IA ME DOLVOL
0.59 0.56 0.53 0.68 0.55 0.49

Top 3 MOM60M DOLVOL ME IA ME IA MOM60M ME
0.60 0.56 0.53 0.63 0.50 0.47
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Table 5: Uni-Sort Factors v.s. Interaction Factors

This table summarizes the significant counts for long-short factors for average returns and Jensen’s alphas.
We count the number of significant average returns and alphas at the 5 % and 10% level in panels A and B.
We report the cross-sectional quantile values of average returns and alphas in panel C among the 61 charac-
teristics. The four specifications are (1) 4x1 long-short portfolio, (2) 2x1 long-short portfolio, (3) interaction
factors, and (4) market-adjusted interaction factors. Our panel tree creates specifications (3) and (4), which
follow the same models in Table 1.

Panel A: # of Significant Cases with 5% level

Uni-Sort 4x1 Uni-Sort 2x1 Interaction Mkt-Adj Interaction
# Mean # Alpha # Mean # Alpha # Mean # Alpha # Mean # Alpha

81-00 17 30 6 22 11 27 10 30
01-20 4 22 5 11 24 28 11 21
81-20 22 33 12 28 32 31 16 42

Panel B: # of Significant Cases with 10% level

Uni-Sort 4x1 Uni-Sort 2x1 Interaction Mkt-Adj Interaction
# Mean # Alpha # Mean # Alpha # Mean # Alpha # Mean # Alpha

81-00 26 34 10 31 18 30 19 39
01-20 8 27 7 18 29 30 14 33
81-20 27 36 18 34 36 41 21 48

Panel C: Cross-Sectional Quantiles for Average and Alpha

Uni-Sort 4x1 Uni-Sort 2x1 Interaction Mkt-Adj Interaction
q Avg Alpha Avg Alpha Avg Alpha Avg Alpha

81-00
25 0.12 0.06 0.07 0.06 0.09 0.09 0.1 0.22
50 0.33 0.46 0.18 0.21 0.22 0.28 0.19 0.29
75 0.61 0.69 0.23 0.31 0.33 0.43 0.27 0.41

01-20
25 0.02 0.07 -0.02 0.05 0.06 0.08 -0.02 0.13
50 0.18 0.29 0.06 0.13 0.41 0.36 0.09 0.25
75 0.36 0.58 0.2 0.31 0.56 0.65 0.25 0.41

81-20
25 0.13 0.14 0.04 0.08 0.08 0.12 0.05 0.17
50 0.28 0.34 0.11 0.16 0.30 0.29 0.14 0.28
75 0.41 0.61 0.19 0.26 0.43 0.48 0.25 0.39
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Table 6: Examples for Interaction Factors

This table follows the 6 examples in Figure A.4. We report the monthly average returns (%) and Jensen’s
alpha (%) of the 4x1 long-short factors and the interaction factors. The interaction factors are created with the
train sample period from 1981 to 2000, and we have provided the corresponding interaction characteristics.
For t-statistics *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively. The description
of characteristics are listed in Table A.1.

Panel A: Stand. Unexp. Earnings Panel B: Profit Margin

Uni-Sort 4x1 +RDM+ME Uni-Sort 4x1 +RDS+DOLVOL
Mean Alpha Mean Alpha Mean Alpha Mean Alpha

81-00 0.68*** 0.63*** 0.95*** 0.91*** 0.10 0.06 0.39*** 0.46***
01-20 0.53*** 0.67*** 1.43*** 1.36*** 0.18 0.28* 0.55*** 0.56***
81-20 0.61*** 0.66*** 1.19*** 1.13*** 0.14 0.17 0.47*** 0.51***

Panel C: Cash Holdings Panel D: Dollar Trading Volume

Uni-Sort 4x1 +NOA+BAS Uni-Sort 4x1 +RVAR FF3+ME
Mean Alpha Mean Alpha Mean Alpha Mean Alpha

81-00 0.39 0.05 1.12*** 1.10*** -0.20 0.02 0.11 0.33**
01-20 0.43* 0.21 -0.04 0.02 0.33* 0.42** 0.34* 0.45***
81-20 0.41** 0.14 0.54*** 0.56*** 0.06 0.22 0.23* 0.39***

Panel E: Seasonality Panel F: R&D to Sales

Uni-Sort 4x1 +RDM+DOLVOL Uni-Sort 4x1 +RVAR FF3+EP
Mean Alpha Mean Alpha Mean Alpha Mean Alpha

81-00 0.54** 0.37* 0.13 0.21 0.43 0.08 1.11*** 1.29***
01-20 0.01 0.05 0.47** 0.46** -0.06 -0.28 0.04 0.49*
81-20 0.27 0.22 0.30* 0.33** 0.19 -0.10 0.58*** 0.90***
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Appendices

Table A.1: Equity Characteristics (61 in total)

This table lists the description for equity characteristics used in the empirical study.

No. Characteristics Description

1 ABR Abnormal returns around earnings announcement
2 ACC Operating Accruals
3 ADM Advertising Expense-to-market
4 AGR Asset growth
5 ALM Quarterly Asset Liquidity
6 ATO Asset Turnover
7 BASPREAD Bid-ask spread (3 months)
8 BETA Beta (3 months)
9 BM Book-to-market equity
10 BM IA Industry-adjusted book to market
11 CASH Cash holdings
12 CASHDEBT Cash to debt
13 CFP Cashflow-to-price
14 CHCSHO Change in shares outstanding
15 CHPM Industry-adjusted change in profit margin
16 CHTX Change in tax expense
17 CINVEST Corporate investment
18 DEPR Depreciation / PP&E
19 DOLVOL Dollar trading volume
20 DY Dividend yield
21 EP Earnings-to-price
22 GMA Gross profitability
23 GRLTNOA Growth in long-term net operating assets
24 HERF Industry sales concentration
25 HIRE Employee growth rate
26 ILL Illiquidity rolling (3 months)
27 LEV Leverage
28 LGR Growth in long-term debt
29 MAXRET Maximum daily returns (3 months)
30 ME Market equity
31 ME IA Industry-adjusted size
32 MOM12M Cumulative Returns in the past (2-12) months
33 MOM1M Previous month return
34 MOM36M Cumulative Returns in the past (13-35) months
35 MOM60M Cumulative Returns in the past (13-60) months
36 MOM6M Cumulative Returns in the past (2-6) months
37 NI Net Equity Issue
38 NINCR Number of earnings increases
39 NOA Net Operating Assets
40 OP Operating profitability
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Continue: Equity Characteristics (61 in total)

No. Characteristics Description

41 PCTACC Percent operating accruals
42 PM profit margin
43 PS Performance Score
44 RD SALE R&D to sales
45 RDM R&D Expense-to-market
46 RE Revisions in analysts’ earnings forecasts
47 RNA Return on Net Operating Assets
48 ROA Return on Assets
49 ROE Return on Equity
50 RSUP Revenue surprise
51 RVAR CAPM Residual variance - CAPM (3 months)
52 RVAR FF3 Res. var. - Fama-French 3 factors (3 months)
53 RVAR MEAN Return variance (3 months)
54 SEAS1A 1-Year Seasonality
55 SGR Sales growth
56 SP Sales-to-price
57 STD DOLVOL Std of dollar trading volume (3 months)
58 STD TURN Std. of Share turnover (3 months)
59 SUE Unexpected quarterly earnings
60 TURN Shares turnover
61 ZEROTRADE Number of zero-trading days (3 months)

Table A.2: Macro Predictors for Market Timing

This table lists the description for macro predictors used in the empirical study.

No. Variable Name Description

1 EP Earnings-to-price of S&P 500
2 DY Dividend yield of S&P 500
3 LEV Leverage of S&P 500
4 NI Net equity issuance of S&P 500
5 SVAR Stock Variance of S&P 500
6 ILL Pastor-Stambaugh illiquidity
7 INFL Inflation
8 TBL Three-month treasure bill rate
9 DFY Default yield
10 TMS Term spread

48

Electronic copy available at: https://ssrn.com/abstract=3949463



Fi
gu

re
A

.1
:M

ar
ke

t-
A

dj
us

te
d

P-
Tr

ee
fo

r
th

e
pe

ri
od

fr
om

19
81

to
20

00

Th
e

m
ar

ke
t-

ad
ju

st
ed

P-
Tr

ee
tr

ai
ne

d
fr

om
th

e
pe

ri
od

fr
om

19
81

to
20

00
is

di
sp

la
ye

d
in

th
is

fig
ur

e.
A

ll
fo

rm
at

fo
llo

w
s

Fi
gu

re
4

.

N
1

S1
R

VA
R

FF
3
≤

0.
6

N
2

S6
BA

SP
R

EA
D

≤
0.

2

N
4

S1
1

M
O

M
6M

≤
-0

.6

N
8

S1
2

ST
D

TU
R

N
≤

0.
2

N
16

#
13

5Y

N
17

#
12

8

NY

N
9

S1
3

C
H

C
SH

O
≤

0.
2

N
18

S1
6

LE
V
≤

-0
.2

N
36

#
54

1

Y

N
37

#
10

73

N

Y

N
19

S1
4

IL
L
≤

0.
2

N
38

#
53

8

Y

N
39

#
23

6

N

N

N

Y

N
5

S7
SE

A
S1

A
≤

-0
.2

N
10

S8
BE

TA
≤

-0
.2

N
20

#
21

6Y

N
21

S1
5

R
O

E
≤

-0
.2

N
42

#
11

2

Y

N
43

#
11

0

N

NY

N
11

S9
A

C
C
≤

-0
.2

N
22

S1
7

SG
R
≤

-0
.2

N
44

#
10

3

Y

N
45

#
10

8

N

Y

N
23

S1
0

A
C

C
≤

0.
2

N
46

#
10

8

Y

N
47

#
22

2

N

N

N

N

Y

N
3

S2
ST

D
T

U
R

N
≤

0.
6

N
6

S3
LE

V
≤

-0
.6

N
12

#
12

0

Y

N
13

S4
BE

TA
≤

-0
.6

N
26

#
20

2Y

N
27

S5
A

TO
≤

0.
2

N
54

#
22

7

Y

N
55

#
12

2

N

N

N

Y

N
7

#
19

2

N

N

49

Electronic copy available at: https://ssrn.com/abstract=3949463



Figure A.2: Out-of-Bag Characteristics Significance: High/Low Inflation

This figure reports the characteristic significance by the out-of-bag ensembles from the random forest of 500 trees. We
report results for high and low inflation periods in the train sample 1981-2000. This figure details follow Figure 9. The
left dark columns indicate significant characteristics.
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