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Abstract
This paper investigates the performance of option investments across different

stocks by computing monthly returns on at-the-money straddles on individual
equities. It finds that options with high historical returns continue to significantly
outperform options with low historical returns over horizons ranging from 6 to
36 months. This phenomenon is robust to including out-of-the-money options or
delta-hedging the returns. Unlike stock momentum, option return continuation is
not followed by long-run reversal. Significant returns remain after controlling for
implied volatility and other characteristics. Abnormal returns also survive factor
risk adjustment. Average option momentum returns are close to zero after paying
the full bid-ask spread for options with below-median bid-ask spreads. Across
stocks, trading costs are unrelated to the magnitude of momentum profits.
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1 Introduction

Momentum, the tendency for assets that have earned above-average returns in the past to

continue to outperform in the future, is one of the most pervasive and widely studied financial

market anomalies. While the original study of Jegadeesh and Titman (1993) focused solely on

U.S. common stock returns, the phenomenon has been found in global stocks (Rouwenhorst

1998), corporate bonds (Jostova et al. 2013), commodities (Erb and Harvey 2006), and

currencies (Okunev and White 2003). Momentum is also found in stock portfolios, including

industries (Moskowitz and Grinblatt 1999), countries (Richards 1997), and long/short factors

(Ehsani and Linnainmaa 2019; Gupta and Kelly 2019). In this paper we ask whether or not

momentum exists within the options market.

We focus on the returns of delta-neutral straddles on individual equities but also consider

other strategies based on model-free VIX portfolios and dynamic hedging. Straddles, which

combine approximately equal positions in a put and a call with the same maturity and

strike price, are constructed to set each straddle’s overall delta to zero. The result is a

strategy whose returns are approximately invariant to the performance of the underlying

stock, which implies that the performance of a straddle-based momentum portfolio will be

essentially unrelated to any momentum in the underlying stocks.

We find that momentum is a far stronger phenomenon in options than it is in other asset

classes, with a pre-cost Sharpe ratio at least three times higher than that of the standard

cross-sectional momentum strategy for stocks. We also find, similar to stocks, that one-

month returns tend to reverse over the following month, though this result is less robust to

different methods for computing option returns. In contrast to stocks, there is no evidence

of long-term reversal in option returns.

Momentum is stable over our sample, significant in every five-year subsample and in

almost all subgroups formed on the basis of firm size, stock or option liquidity, analyst
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coverage, and credit rating. After controlling for other characteristics in Fama-MacBeth

regressions, or after factor adjustment using the model of Horenstein et al. (2019), momentum

remains highly significant.

The momentum strategy based on the past year of returns, with an annualized Sharpe

ratio of 1.53, offers strong risk-adjusted returns. Furthermore, momentum returns are posi-

tively skewed, with a relatively modest maximum drawdown relative to their mean returns

or relative to the drawdowns of alternative option strategies. Thus, the large average returns

we document do not appear to accompany the type of crash risk that Daniel and Moskowitz

(2016) show exists for stock momentum portfolios.

Transactions costs lower the performance of the momentum and reversal strategies, but

both remain profitable under reasonable assumptions if strategies are modified to reduce

the effects of these costs. These modifications include forming portfolios from straddles

with more extreme past returns (deciles rather than quintiles), discarding straddles whose

component call or put trades with a large bid-ask spread, and combining the momentum and

reversal signals into a single composite strategy. Surprisingly, we find no relation between

the strength of the momentum effect and the bid-ask spreads of the firm’s options.

Following advances in the stock momentum literature, we also examine several other types

of momentum. We find that the so-called “time series momentum” strategy of Moskowitz

et al. (2012) delivers returns that are very similar to the standard cross-sectional strategy.

Options also display momentum at the industry level, similar to the findings of Moskowitz

and Grinblatt (1999) for stocks, and in factor portfolios, echoing similar results by Ehsani

and Linnainmaa (2019) and Gupta and Kelly (2019). We demonstrate, however, that the

standard cross-sectional momentum strategy is the most robust.

Again borrowing from the stock momentum literature, we examine a number of potential

explanations of our findings. The behavioral models proposed to explain stock momentum

do so by producing underreaction (Barberis et al. 1998, Grinblatt and Han 2005), delayed
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overreaction (Daniel et al. 1998), or a mixture of both (Hong and Stein 1999). Potentially

rational explanations include cross-sectional variation in unconditional expected returns (e.g.,

Conrad and Kaul 1998), time-varying risk premia (e.g., Grundy and Martin 2001, Kelly et al.

2020), and compensation for crash risk (Daniel and Moskowitz 2016).

Delayed overreaction can be ruled out given our finding that there is no tendency for

options to exhibit long-run reversal. Because we find no evidence of crash risk or negative

skewness in momentum returns, it is unlikely that momentum profits represent compensation

for those types of risks. We can also rule out that momentum arises purely as a result of

cross-sectional variation in unconditional expected returns.

The remaining two hypotheses, underreaction and time-varying risk premia, are impossi-

ble to distinguish. We can, however, ask whether momentum profits appear to be the result

of time-varying factor risk exposure. Following Grundy and Martin (2001), we examine vari-

ation in loadings on market, volatility, and jump risk factors. We find only weak evidence of

time-varying betas, and no evidence that risk premia and betas interact in the way necessary

to produce the momentum effect.

Our paper is related to a number of studies documenting mispricing in the options market.

Stein (1989) shows a tendency for long maturity options on the S&P 100 Index to overreact

to changes in short-term volatility. Poteshman (2001) confirms the finding in S&P 500

Index options and also finds evidence of underreaction at shorter horizons. While some of

our results are qualitatively similar, our analysis differs in its focus on the cross section

of individual equity options. In addition, the momentum pattern we document operates

at much longer horizons, ranging from months to years, rather than days, and we find no

evidence of overreaction. Other evidence of behavioral effects in options includes Han (2008),

who finds that index option prices are affected by sentiment, while Eisdorfer et al. (2020) find

that options are underpriced when there are five weeks, rather than the usual four, between

expiration dates. Boyer and Vorkink (2014) find evidence that skewness preferences drive
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the pricing of individual equity options.

In the broader empirical options literature, we contribute by proposing several new pre-

dictors of the returns of individual equity options. Notable contributions of this literature

include the historical-implied volatility differential of Goyal and Saretto (2009) and the im-

plied volatility slope of Vasquez (2017), which we find to be the two strongest predictors in

our sample. Other papers in this area include Cao and Han (2013), who study idiosyncratic

risk and option returns, and Bali and Murray (2013), who analyze the effects of risk-neutral

skewness. Cao et al. (2019) show that the existence of credit default swaps on a firm lowers

expected option returns, while Christoffersen et al. (2018) find a negative relation between

option liquidity and returns.

Our finding of short-term reversal in option returns relates to the literature on order

imbalances in options markets. Muravyev (2016) finds that positive imbalances strongly

predict low future returns, and he also shows evidence of option return reversal at the daily

frequency. It is possible that monthly option returns are correlated with order imbalances,

which could explain the short-term reversal we document in monthly returns. Alternatively,

high recent option returns may reduce the capital available to option sellers, leading to more

negative (because the sellers are short) risk premia (e.g., He and Krishnamurthy 2013).

We contribute to the larger literature on momentum by showing support for the idea that

momentum and reversal are not as strongly linked as often thought. Lee and Swaminathan

(2000), for example, find that long-run reversal among momentum portfolios exists only

for certain levels of formation-period trading volume. Conrad and Yavuz (2017) show that

the stocks in the momentum portfolio that contribute to the profitability of the momentum

trade are different from those that subsequently exhibit long-run reversal. In our sample

of straddle returns, we find no evidence of long-run reversal. Rather, option momentum

persists over the multi-year horizons at which stocks tend to reverse. This is likely related

to the fact that options, as short-lived assets, cannot accumulate mispricing over time in the
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same way that stocks can.

In the following section we briefly describe the data used in our analysis. Section 3

shows our main results, which focus on the standard cross-sectional momentum and reversal

strategies applied to options. Section 4 examines the performance of alternative momentum

and reversal strategies, namely time series, industry, and factor-based strategies. In Section

5, we then subject these strategies to risk adjustment, check their consistency in the time

series and cross section, examine spanning relations between them, and evaluate the impact

of transaction costs and margins. Section 6 concludes.

2 Data

We obtain call and put prices from the OptionMetrics database, which provides end-of-day

bid-ask quotes on options traded on U.S. exchanges. We retain options on common equity

only and discard any options with expiration dates that are outside the regular monthly

cycle. Using the WRDS link table, we merge this data with CRSP, which we use as the

source of stock prices, returns, trading volume, market capitalization, and adjustments for

stock splits. The availability of options data restricts our sample period to the interval from

January 1996 to June 2019.

Most of our analysis focuses on the performance of zero delta straddles, which combine

a put and a call with the same strike price and expiration date. Our sample construction

is designed to balance two competing priorities. The first is that the options in our sample

are actively traded, so that the returns that we calculate are valid. The second priority is

that our sample is large enough to deliver statistically meaningful results. Unfortunately,

liquidity filters, such as a requirement that open interest be nonzero, tend to reduce the

sample size, putting these two priorities in conflict.

We strike a balance between these two concerns by imposing the positive open interest

5



filter only during the holding period. This is where it is most important that the returns we

work with are accurate, as biases or errors here will contaminate the performance measures

we focus on. By dropping the open interest filter in the formation period, which is in some

cases several years long, we increase the sample size by up to 50%. While the returns used in

the formation period will perhaps be less meaningful, any noise or bias in the returns used

here should if anything bias our findings toward the null of no predictability.

On each expiration day1, we select two matching call/put pairs for each stock, where all

calls and puts expire in the following month. One is the pair whose call delta is closest to 0.5.

The other uses the same criteria but requires that both the put and the call have positive

open interest on the day they are selected. In either case, if the call delta is less than 0.25

or greater than 0.75, we discard the observation. Thus, the sample targets options that are

at-the-money and does not include contracts that are deep in-the-money or out-of-the-money.

From each pair, we form a zero delta straddle. This entails holding the call and put with

weights that are proportional to −∆PC and ∆CP , respectively, where C (P ) is the bid-ask

midpoint of the call (put) and ∆ denotes the option’s delta.2 The constant of proportionality

is chosen such that the weights sum to one. Note that both weights are always positive and

typically close to 50/50.

To ensure that the strategies we consider are reasonably liquid, we discard any straddle

in which the weighted average bid/ask spread is greater than 50% of the straddle’s total

value, computed using midpoint prices. If this occurs, we attempt to replace the straddle

with another that is further from at-the-money, as long as the call delta is within the range

given above.

Straddle returns are simply the weighted average of the returns on the call and the put.

1 Prior to 2015, stock option expiration dates were Saturdays. The de facto expiration date was the prior
trading date, which is the date we use.

2We use the deltas provided by OptionMetrics, which are computed using a binomial tree. The method
used should coincide with the Black-Scholes formula when early exercise is suboptimal.
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Because we hold straddles to expiration, call and put returns are calculated based on the split-

adjusted price of the underlying stock on the expiration date, where split adjustment uses

data from CRSP. The initial price of each option is taken as its bid-ask midpoint. Calculating

returns in this way ignores the possibility of early exercise, though in untabulated results

we find that non-dividend paying stocks, which are unlikely to be exercised early, show

almost identical patterns. This is expected given that our analysis focuses on short-term

near-the-money options, for which early exercise is rarely optimal.

Our empirical analysis focuses on Goyal and Saretto’s (2009) simple strategy benchmark

of one-month at-the-money straddles, held to expiration. An alternative benchmark uses

the CBOE VIX methodology.3 When applied to individual equities, the CBOE calls these

benchmarks equity-VIX indices, currently published for Apple (ticker symbol: VXAPL),

Amazon (ticker symbol: VXAZN), IBM (ticker symbol: VXIBM), Google (ticker symbol:

VXGOG), and Goldman Sachs (ticker symbol: VXGS).4

In addition to using at-the-money options, the VIX methodology includes out-of-the-

money call and put options. When weighted proportionally to the reciprocals of squared

strike prices, these options form an equity-VIX benchmark portfolio. At expiration, this

option portfolio has a U-shaped payoff, approximating the squared stock return (Carr and

Madan 2001). In this sense, the portfolio represents the discounted risk-neutral variance. It

is approximately delta neutral, with a delta of zero exactly only if a continuum of strikes are

available.

To compute a VIX return, we require at least two out-of-the-money calls and two out-

of-the-money puts to be observed. As with straddles, the weighted average bid/ask spread

of the VIX portfolio must be no greater than 50%, expressed as a percentage of bid-ask

midpoints, and only options with positive open interest are included at the start of the

3https://cdn.cboe.com/resources/vix/vixwhite.pdf
4https://www.prnewswire.com/news-releases/cboe-to-apply-vix-methodology-to-individual-equity-

options-112955759.html
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holding period. As with straddles, we do include options with zero open interest when

computing VIX returns during the formation period. While this does enlarge the sample

size, the greater data requirements for VIX returns leads us to relax the requirement used

elsewhere that the formation period have no missing observations. Instead, we require that

at least two thirds of the months in the formation period (rounding up) have a non-missing

VIX return, and we compute the formation period return by averaging those observations.

Following Bakshi and Kapadia (2003), we also consider daily delta-hedging of our option

straddles and equity-VIX portfolios. These strategies hold the same portfolios of one-month

options to expiration, but they also subtract a portion of excess daily return on the underlying

stock using a Black-Scholes delta hedge for each option, where the hedge is rebalanced daily.5

This dynamic hedging lowers the overall volatility of the strategies.

For all strategies, we compute excess returns by subtracting the one-month Treasury bill

rate imputed from data on Ken French’s website. All results in the paper use excess returns,

though for brevity we typically just refer to them as “returns.”

Finally, we extract a number of implied volatilities from the OptionMetrics Volatility

Surface File. We compute a one-month at-the-money implied volatility by averaging the

values for the 30-day call and put, each with absolute delta equal to 0.5. We follow Goyal

and Saretto (2009) by subtracting the rolling one-year historical volatility from daily stock

returns to obtain their volatility difference measure. A similar implied volatility from 60-day

options is used to compute the implied volatility slope of Vasquez (2017). We measure the

slope of the implied volatility curve (the “smirk”) from one-month options as the difference

between the implied volatility of a 30-day call with delta of 0.3 and the implied volatility of

a 30-day put with a delta of -0.3.

Our primary dataset is described in Panel A of Table 1. The dataset contains about

5In some cases, the Black-Scholes delta for an option that we are hedging is missing from the Optionmetrics
data files. When this occurs, we infer a delta using the current stock price and the most recent non-missing
implied volatility for that option.
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385,000 observations of straddle returns with positive open interest. Given that our sample

has 282 months, this translates to 1,369 straddles per month on average. Straddle returns

have negative means (-5.3% monthly), large standard deviations (81% monthly), and sub-

stantial positive skewness, as indicated by the low median.

The table further shows that the historical and implied volatilities of the firms in our

sample are similar to those reported in prior studies (e.g., Vasquez, 2017). With an average

market cap of around $10.6 billion, the table also shows that optionable firms tend to be

larger than average, and analyst coverage is similarly higher than average. The table also

reports stock illiquidity, proxied by the average Amihud (2002) illiquidity measure over the

past 12 months, and option illiquidity, measured by the weighted average percentage bid-ask

spread of the puts and calls in the straddles we examine, also averaged over the past 12

months. Analyst coverage is the number of analysts covering each stock, updated monthly.6

To compare the properties of straddle returns and VIX returns, Panel B examines data

for which straddle returns and VIX returns are both available. This leads to a smaller sample

but makes the comparison between straddle and VIX returns cleaner. We compute these

returns both with and without dynamic delta hedging.

The table shows that VIX returns are generally more negative, with higher standard

deviation and a longer right tail. For both straddle and VIX returns, dynamic hedging has

relatively modest effects on average returns and results in larger reductions, as expected,

in standard deviations. The decrease is particularly large for VIX returns, whose U-shaped

payoff results in a larger gamma, making dynamic hedging more beneficial. After hedging,

straddle and VIX returns are almost identical in terms of standard deviation.

6The analyst coverage and forecast data are from I/B/E/S unadjusted summary history.
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3 Results

In this section we present our main findings documenting momentum and reversal in straddle

returns. We begin with univariate sorts and then control for other option return predictors

using Fama-MacBeth regression. Finally, we examine the dependence structure more closely,

showing the declining importance of returns at longer lags.

3.1 Momentum and reversal in the cross section of straddles

Some of our primary results are summarized in Figure 1, which shows slope coefficients from

the Fama-MacBeth regression

Ri,t = an,t + bn,tRi,t−n + εi,t,

where Ri,t is the return on a straddle on stock i in month t. Following Fama (1976), we can

interpret bn,t as the excess return on a diversified portfolio of stock straddles with a historical

portfolio return of 100% at lag n. In the figure, n determines the placement on the horizontal

axis, and the top and bottom panels differ only with respect to the range of lags displayed.

The top panel shows that straddle returns in the previous month are likely to be reversed

in the following one. While the return at lag two is not predictive of future returns, at

lags three and higher the slope coefficient turns positive, indicating momentum rather than

reversal. Impressively, the slope coefficients on lags three through 12 are all positive and all

statistically significant.

Beyond lag 12, statistical significance wanes, but the slope coefficients remain clearly

positive on average. This positive mean continues even beyond lag 100, as shown in the

lower panel. While the sample used to estimate coefficients with such long lags is small,

both in the time series and the cross section, these results indicate a complete lack of long-
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term reversal in straddle returns.

As is standard in momentum studies, our primary measure of momentum is based on

multiple returns over a formation period that is months to years long. Typically, these

returns are aggregated using standard compounding. However, in our setting we find that

this approach is inferior to one based on average returns. The reason for this is the extreme

volatility of straddle returns, which frequently take values close to -100%. With just one

of these values in the formation period, the cumulative return will be close to -100% as

well. The result is a large number of cumulative returns clustered around this value, making

portfolio sorts less meaningful.

We therefore depart from standard practice by computing our momentum signal using

the average return over the formation period.7 This reduces the impact of return outliers

and makes the momentum signal somewhat more symmetric. Results based on cumulative

returns are nevertheless very strong.

Table 2 examines the relation between past and future straddle returns using a variety of

different formation periods. We sort firms into quintile portfolios based on average returns in

the formation period and report the mean and t-statistic of each quintile portfolio’s returns.8

We also report the long/short high-minus-low portfolio. The holding period remains a single

month in all cases.

Given the results from Figure 1, the results are not surprising. We see significant evidence

of cross-sectional reversal at lag one and strong momentum for longer formation periods. It

is notable that the “classic” momentum strategy, based on lags two to 12, is the strongest,

both in terms of average return spread and statistical significance. Nevertheless, it is clear

that lags 13 to 24 also offer highly significant predictive information. Even returns at lags

25 to 36 are positively related to current returns, though statistical significance declines

7We are not the only study to do so. Grundy and Martin (2001) also do not compound.
8We use quintile sorts rather than decile sorts because of the somewhat smaller sample of optionable

stocks. Results using deciles are nevertheless very similar, as are terciles.
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somewhat, in part due to the smaller sample of firms with option returns available over

those formation periods.

Panel B of Table 2 shows the results of quintile sorts on variables that have already

appeared in the empirical options literature. One is the difference between implied and

historical volatilities, shown by Goyal and Saretto (2009) to forecast future option returns.

Another is the amount of idiosyncratic volatility in the underlying stock, as defined by Cao

and Han (2013). Sorting by market cap of the underling firm also generates a spread in

straddle returns, as demonstrated first by Cao et al. (2017). From Vasquez (2017), the slope

of the term structure of at-the-money implied volatilities is the fourth measure. The final

measure is the slope of the implied volatility curve (the “smirk”) from one-month options.

This is related to the skewness variable examined by Bali and Murray (2013).

Comparing the two panels of the table, it is clear that momentum offers performance

that is close to that of the best predictors from the existing literature, which are the spread

between implied volatility and historical volatility (IV-HV) and the term spread in implied

volatilities (IV term spread). The reversal strategy, while highly significant statistically,

offers returns that are more in line with the strategies with lower return spreads (idiosyncratic

volatility and size).

Although the results presented in this table suggest that momentum patterns in straddles

roughly mimic those in stocks, it is worth pointing out a critical difference between stock

reversal and momentum and the findings reported here. In stocks, a natural interpretation

of the reversal strategy is that a period-t price that is “too low” leads to negative returns in

period t and positive returns in period t + 1. The same interpretation does not apply here

because the options used to compute the period-t return are different from those used to

construct the return in period t + 1, as the former set expires at the start of period t + 1.

Thus, the momentum patterns we document in this paper may more accurately be described

as cross-serial correlations, in that all forms of reversal and momentum reflect the returns
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on some set of options predicting the future returns on a completely different set.

Digging in a little deeper, the straddle return over period t only depends on option prices

at the end of period t − 1. This is because the final payoff on options held to expiration

depends only on the underlying stock price at time t. Thus, if option prices became distorted

at the end of period t, this would only impact straddle returns in period t+1, because period-

t returns do not depend on period-t prices. Thus, short-term reversal is a counter-intuitive

finding in our option setting, and it cannot arise from simple bid-ask bounce, as studied by

Roll (1984). To explain reversal, we would need microstructural biases in options prices that

are correlated with past returns on expiring options.

3.2 Controlling for other predictors

We next ask whether the predictive ability of past returns remains after controlling for other

characteristics. We assess this using Fama-MacBeth regressions, where the controls are the

same variables used in Panel B of Table 2.9

From the regression results in Table 3, we see that controlling for these characteristics

has a relatively minor effect when we focus on the one-month formation period. For longer

formation periods, including controls has almost no effect on the coefficient estimates or t-

statistics for past returns. Similarly, adding a past return measure to the set of controls has

little effect on the coefficient estimates of the controls, though in some cases their statistical

significance is reduced. The overall impression given by the table is that past straddle return

provides a signal that is fairly unrelated to other predictors.10

9We use Fama-MacBeth (1973) cross-sectional regressions, instead of panel regression, because cross-
sectional regressions avoid hindsight bias by computing the slope coefficients using information available
before time t.

10In corresponding results based on panel regressions, the short-run reversal phenomenon disappears, and
the control variables mostly lose their statistical significance. The standard “2 to 12” momentum effect
remains very strong, however, with slightly smaller coefficient estimates. This contrasts strongly with results
from the stock momentum literature. Kelly et al. (2020), for example, estimate a coefficient on past returns
that is essentially zero when using the panel regression framework.
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3.3 Alternatives to the static straddle

To assess the robustness of our option returns, Table 4 compares monthly quintile spreads on

at-the-money straddles to quintile spreads on equity-VIX benchmarks, constructed according

to the CBOE VIX methodology. Table 4 also compares these static return-to-expiration

strategies with delta-hedged versions, which dynamically hedge by trading the underlying

stocks using the Black-Scholes delta. This reduces risk by maintaining a zero delta each day,

instead of letting the portfolio sensitivity drift during the month.

Table 4 shows that all the momentum strategies are profitable for horizons ranging from 6

to 36 months. The dynamically hedged strategies are usually more profitable and more statis-

tically significant than their static counterparts. For example, the 1-12 month static straddle

quintile spread earned 3.64% per month, whereas its daily-hedged counterpart earned 5.59%

per month.

The dynamically hedged returns show a pattern of profitable return continuation at

all horizons. The static returns also show return continuation for all strategies except for

short-term formation horizons of 1 or 1-2 months. Instead of positive continuation, these

short-term strategies display negative reversal. This pattern is reminiscent of Lehman’s

(1990) short-term stock return reversal.

Mechanically, the difference between hedged and unhedged returns is the result of a

stock trading strategy. To understand this strategy, consider a long straddle position that

is delta-hedged daily. The positive gamma of the position means that the delta hedge must

buy stock following a negative stock return, and sell stock following a positive stock return.

In other words, the delta hedge itself is a type of reversal strategy. High-frequency stock

reversal strategies are profitable (Lehman 1990), so delta-hedging increases the returns of

a long options strategy. Conversely, delta hedging reduces the returns of a short options

strategy. The difference between the returns on these delta hedges explains the qualitatively
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different performance of the hedged and unhedged short-term reversal strategies.

Overall, Table 4 shows that option momentum strategies are robustly profitable for all

benchmarks when using formation horizons of at least 6 months. The remainder of our paper

focuses on the simplest benchmark of static at-the-money straddles.11

3.4 Signal decay

One important difference between stock and option momentum and reversal patterns appears

to be in the long-term persistence of option returns. In stocks, it has been well known since

De Bondt and Thaler (1985) that stock returns experience reversal at horizons of 3-5 years.

In contrast, Figure 1 suggests that the relation between current and lagged returns remains

positive even at lags as long as 10 years.

This finding raises the possibility that momentum arises due to cross-sectional variation

in unconditional expected returns, a hypothesis considered for stocks by Lo and MacKin-

lay (1990), Jegadeesh and Titman (1993), and Conrad and Kaul (1998). While the stock

evidence in Jegadeesh and Titman (2001) and Lewellen (2002) appears to undermine this

explanation, the possibility remains that it does explain option momentum. As Jegadeesh

and Titman (2001) emphasize, if momentum is caused by variation in unconditional return

expectations, then current and lagged returns should be similarly related regardless of the

length of the lag. In stocks, this implication is contradicted by the presence of long-horizon

reversal.

In this section we reexamine long-run persistence and reversal in returns to augment the

evidence already presented in Figure 1. We present regressions in which current returns are

regressed on past returns at lags one to 60. As opposed to Figure 1, similar lags are grouped

together, which will reduce the number of predictors and also make them less noisy, and

11Understanding the reversal properties of high-frequency option and stock returns remains an interesting
topic for market microstructure research.

15



which should help reduce the large standard errors apparent in the figure. The regressions

will also include multiple predictors, so that we can assess the incremental predictive power

of longer-lagged returns relative to shorter lags.

The regression results, shown in Table 5, provide a number of take-aways. First, by

comparing regression (1) with the other five regressions in the table, the short-run reversal

effect (the coefficient on the lag 1 return) is generally strengthened by the inclusion of past

returns at longer lags. Second, the slope coefficients on past returns at longer lags are

positive, with only one exception. In most cases these coefficients are at least significant at

the 5% level. Including these longer lags also leads to an improvement in fit, as evidenced by

higher average adjusted R-squares. Third, the slope coefficients are always most positive for

the “2 to 12” past return and generally decline as the lag lengthens. While some individual

results are statistically weak, it is most likely because the size of the sample decreases

markedly for long lags because we require additional years of past straddle returns to be

available. Overall, the table paints a clear picture of momentum profits persisting for up to

five years.

In the stock literature, the finding of both momentum and long-term reversal has resulted

in some behavioral explanations centered around the idea of delayed overreaction (e.g., Daniel

et al. 1998). The pairing of momentum and long-term reversal is also present in corporate

bonds, as shown by Bali et al. (2021). In contrast, the complete lack of any evidence of long-

term reversal in option returns appears to be inconsistent with this mechanism. Rather, our

results are more consistent with an explanation based on underreaction, which may result

from behavioral biases, such as conservatism (Barberis et al. 1998), or from market frictions,

such as gradual information diffusion (Hong and Stein 1999).12 At this point we also cannot

rule out the hypothesis that momentum is driven by time-varying risk premia.

12The Barberis et al. (1998) model also features overreaction, but this is not the mechanism that generates
momentum. The full model of Hong and Stein (1999) features overreaction and underreaction, though the
“newswatchers only” model only generates underreaction.
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If the explanation is in fact underreaction, then it is unlikely to be the result of the

disposition effect, which Grinblatt and Han (2005) suggest as a potential cause of stock

momentum. The disposition effect implies that investors will tend to hold onto poorly

performing position, but it is impossible to do so in our setting given that the short-term

nature of the options we analyze forces portfolio turnover via expiration.

Table 5 also implies that variation in unconditional expected returns is not a complete

explanation, as more recent returns are clearly more predictive than returns at longer lags.

Thus, option momentum must be driven by some form of serial dependence.

4 Related strategies

In this section we analyze different alternatives to the standard momentum strategy of

Jegadeesh and Titman (1993). These include the “time series momentum” strategy of

Moskowitz et al. (2012), the industry momentum strategy of Moskowitz and Grinblatt (1999),

and a factor momentum strategy similar to those of Gupta and Kelly (2019) and Ehsani and

Linnainmaa (2019).

4.1 Time series momentum

Using the framework of Lo and MacKinlay (1990), Lewellen (2002) decomposes the classical

momentum strategy of Jegadeesh and Titman (1993) and shows that its profitability has

three potential sources. One is autocorrelation in a stock’s own returns. Another is cross-

sectional variation in unconditional means, which we believe is ruled out by results in the

prior section. The last is negative cross-serial correlation in firm returns. That is, a winner

can remain a winner because its own high return forecasts low returns by other firms in the

future.

In futures markets, Moskowitz et al. (2012) find that a more successful “time series

momentum” strategy is obtained from an alternative portfolio construction that reduces or
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eliminates the latter two sources. By holding assets based on their past absolute return

rather than relative return, we may form a strategy that isolates the own autocorrelation

effect. This is useful when autocorrelations and cross-serial correlations are both positive,

as the former will contribute to momentum profits while the latter will detract.

Our implementation of time series momentum omits the scaling by lagged volatility that

Moskowitz et al. (2012) use in their work. Our strategy also eliminates time variation in

the degree to which the portfolio is net long, as our implementation always holds equal

dollar values of long and short positions. In making these modifications, we avoid the

critique of Goyal and Jegadeesh (2018), who argue that the strong performance of time

series momentum is due to the fact that the degree to which it is net long varies over

time. This variability is the result of volatility scaling and also the fact that the size of the

positions taken is independent of the number of positions taken on that side of the trade

(long or short).

Our time series momentum strategy is simple and follows Ehsani and Linnainmaa (2019).

We long an equally weighted portfolio of all straddles whose past average excess returns (over

some formation period) are positive and short an equally weighted portfolio of straddles with

negative past average excess returns. The long and the short sides are therefore equal in

value, and return volatilities are not taken into account. As in Ehsani and Linnainmaa

(2019), we compare this strategy to a cross-sectional strategy in which winners and losers

are determined based on whether past returns are higher or lower than contemporaneous

cross-sectional medians.

Table 6 reports average returns on these two strategies for a variety of formation periods.

First focusing on the cross-sectional strategies, we see that short-term reversal return is

somewhat smaller when the long and short sides of the trade each include half of all stocks,

though statistical significance is relatively unchanged. The high-low spreads for momentum-

type strategies (e.g. lags 2 to 12) are also smaller here than in Table 2, which is to be expected
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given the inclusion of stocks with less extreme past returns, but again the t-statistics do not

change much. This suggests that momentum is pervasive across all options, not just those

in the extremes of the distribution of past returns.

Turning next to the time series strategies, we see high-low spreads that are very similar to

the corresponding spreads from cross-sectional strategies. In no case does the cross-sectional

strategy significantly under- or out-perform the time series version. In addition, the two

types of strategies tend to be highly correlated, with correlations ranging from 0.81 to 0.90.

These results differ substantially from those obtained in equity markets. Lewellen (2002)

demonstrated that negative cross-serial correlations, the tendency of the return on a stock

to negatively predict the future returns on another stock, can be an important component

of momentum returns. Because this component represents the key difference between cross-

sectional and time series momentum strategies, our results imply that this effect is largely

absent in options.

We conclude from this analysis that the distinction between cross-sectional and time

series strategies in straddles is less important for options than it is for stocks. For the

remainder of the paper, we therefore limit our attention to the more common cross-sectional

strategies.

4.2 Industry momentum

In a highly influential paper, Moskowitz and Grinblatt (1999) show that industry portfolios

also display momentum. They further argue that industry momentum subsumes most if not

all of the profitability of the stock-level momentum strategy. While subsequent work (e.g.

Grundy and Martin 2001) has shown that industry momentum and stock momentum are

distinct, the power of industry momentum remains striking.

In this section we construct the industry momentum strategy of Moskowitz and Grinblatt

(1999), replacing stock returns with straddle returns. As in that paper, we classify firms
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into 20 different industries, calculate industry portfolio returns, rank industries by their

performance over some formation period, and then form a long and a short momentum

portfolio from the top and bottom three industries, respectively.13 The results are shown in

Panel A of Table 7.

In the short run, we find neither reversal nor momentum in industry portfolios us-

ing short formation periods. This is in contrast to Grinblatt and Moskowitz, who show

that industry stock portfolios display momentum even with a one-month formation period.

Lo and MacKinlay (1990) indicate that momentum in portfolios is largely due to cross-

autocorrelations. Our results suggest that these effects are smaller in options returns than

they are in stock returns.

The profitability of the standard “2 to 12” momentum strategy is similar to that based

on individual straddles, but formation periods that exclude the first 12 lags are ineffective for

industry portfolios, whereas for individual straddles even the “25 to 36” strategy delivered

statistically significant average returns. These results imply that cross-sectional variation in

unconditional expected returns is a poor explanation of momentum at the industry level.

4.3 Factor momentum

Early evidence of momentum in “factor” portfolios was provided by Lewellen (2002), who

showed the existence of momentum in portfolios formed on the basis of firm size and the

book-to-market ratio. More recently, both Ehsani and Linnainmaa (2019) and Gupta and

Kelly (2019) have examined larger numbers of long/short factors proposed in the finance

literature and conclude that the factor momentum strategy is superior to individual stock

momentum and in fact may explain it completely. We follow this work by analyzing factor

momentum in the options setting.

13We differ from Moskowitz and Grinblatt (1999) by examining average past returns rather than com-
pounded returns.
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The literature on option factors is nascent, and the factor structure of options is relatively

unstudied. One exception is the recent paper of Horenstein et al. (2019, HVX), which finds

evidence that a four factor model performs well in explaining option returns. These factors

include the excess returns on short delta-hedged SPX options as well as high-minus low

portfolios formed on the basis of firm size, idiosyncratic volatility, and the difference between

implied and historical volatilities. We implement their model with minor differences. We

use straddles rather than delta-hedged calls and use quintile rather than decile sorts, which

we find lead to additional noise and no increase in signal. Neither one of these differences

should have much of an effect.

In the interest of expanding the factor universe somewhat, we augment the HVX model

with three other factors. These include high-minus-low factors based on the implied volatility

term spread and the slope of the implied volatility smirk, as well as the excess return on an

equally weighted portfolio of short equity straddles. This gives us seven factors in total.

Our implementation of factor momentum differs from that of Ehsani and Linnainmaa

(2019) and Gupta and Kelly (2019). When we follow their approach, we find that results

are mildly sensitive to how long/short factors are “signed.” That is, they are sensitive to

whether the long side of the factor portfolio is the one with the highest or the lowest values of

the characteristic used to define the factor. We avoid the issue of signing factors by including

both the long and short legs of the factor as separate portfolios, where the “short” side of

the factor is also held as a long position. Thus, even though we start with seven factors, our

factor momentum strategy analyzes 12 factor legs, all of which are held long. These include

the long and short legs of the five long/short factors as well as the two short-only factors.

This approach also has the potential advantage of expanding the cross section of portfolios

in the sort, which would otherwise be extremely small.

From these 12 portfolios, we construct a momentum strategy by sorting the option factor

legs by their own past returns over some formation period. The bottom three legs are assigned
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to the “low” portfolio, while the top three legs form the “high” portfolio. A long/short

strategy is given by the difference between the two.

Panel B of Table 7 shows that factors display momentum using all formation periods

considered. Similar to the stock-based results of Ehsani and Linnainmaa (2019) and Gupta

and Kelly (2019), momentum is found even at the very shortest formation periods. Even

more surprisingly, highly delayed formation periods are also profitable. The standard “2 to

12” strategy is actually less profitable than one based on returns from 13 to 36 months ago.

Conrad and Kaul (1998) and Lewellen (2002) decompose momentum returns into a tem-

porary component due to autocorrelation and a permanent component due to cross-sectional

variation in expected returns. The surprising profitability of 1-month factor momentum

strategies indicates autocorrelation as a source of profits. The profitability of strategies

based on formation periods 2- to 3-years old suggests that factor momentum may also be

the result of variation in the unconditional returns of the factors, which is captured by any

sort based on past returns. Because of our comparatively short option sample, we lack the

power to distinguish between persistent and permanent variation across means. Nevertheless,

the results suggest the possibility that factor momentum is driven both by autocorrelation

and differences in unconditional means.

5 Risk and robustness

In this section we ask whether the profitability of option momentum and reversal is accom-

panied by undesirable levels of risk, or whether the returns on the strategies presented can

be explained by exposure to other priced factors. We also examine whether there is any

redundancy between strategies that are most closely related. Finally, we investigate the con-

sistency of these strategies, both over time and in the cross section, and evaluate the impact

of transactions costs and margin.
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5.1 Risk and consistency of performance

In this section we examine the risk and time consistency of the different strategies considered.

Our primary focus is on the degree of tail risk and on whether the returns on the primary

strategies we investigate are stable over our sample period.

Table 8 shows some basic performance statistics on 13 different portfolios. Panel A in-

cludes the cross-sectional momentum and reversal strategies, as well as the related strategies

based on industry and factor portfolios. Panel B shows results for the seven factors based

on prior research, as described in Section 4.3.

In this section only, long/short portfolios formed based on past returns are constructed

to have positive mean returns. This allows for a more meaningful interpretation of sign-

dependent risk measures such as skewness and maximum drawdown.14 For portfolios based

on the standard momentum formation period, this results in going long the winners and short

the losers for individual straddles, industries, and factors. For portfolios based solely on a

single month of past returns, the nature of the strategy differs between individual straddles

or industries and factors. This is because individual straddles display short-term reversal,

while factors display short-term momentum. Industries display neither, really, but have

a small and insignificant tendency for reversal. We therefore examine the low-minus-high

portfolio for individual straddles and industries when sorting on the one month lag and the

high-minus-low portfolio for factors.

Overall, the results in Table 8 show that the reversal and momentum strategies based on

individual straddles have relatively low risk, at least compared with other option strategies.

For example, the individual straddle momentum strategy has an average return that is

slightly larger than that of an equally weighted portfolio of short straddles, but its standard

deviation is only half as large. Furthermore, the momentum portfolio shows positive skewness

14The maximum drawdown is the largest fraction by which the cumulative value of a portfolio has fallen
below its prior maximum.
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and a maximum drawdown of 56%, while the equally weighted short portfolio is highly

negatively skewed and suffers from a maximum drawdown greater than 100%.15

The momentum strategy on individual straddles has a Sharpe ratio of 0.441 on a monthly

basis, which is an impressive 1.53 annualized. This lags behind only the best two performing

factors, namely the implied-minus-historical volatility factor of Goyal and Saretto (2009)

and the implied volatility term spread factor of Vasquez (2017).

Momentum strategies based on industries or factors are much more volatile than those

based on individual straddles, and each has a maximum drawdown above 95%. Industry

momentum is also negatively skewed. Thus, both of these strategies may be less attractive

than their average returns would suggest.

Turning next to strategies based on just the first return lag, we see similar patterns. Short-

term reversal in individual straddles has a monthly Sharpe ratio of 0.330, or 1.14 annualized.

Furthermore, its return distribution is positively skewed, though greater kurtosis and larger

drawdowns relative to momentum make the strategy less attractive. Industry- and factor-

based strategies continue to suffer from greater volatility, and maximum drawdowns are large

in both cases, above 100% for industries.

A surprising result from the table is that the majority of long/short factors based on

individual straddles display a clear positive skew. In contrast, factor- and industry-based

portfolios tend to show lower or negative skews, though even these are modest relative to

the pronounced left skews of the short SPX straddle and the short equally weighted stock

straddle portfolio. The relative lack of outliers and the positive skewness appear to rule

out the possibility that the mean returns on momentum or short-term reversal represent

compensation for return asymmetry. Thus, while skewness may be an important determinant

of option prices, it is a poor explanation of relative cross-sectional returns.

15The maximum drawdown is poorly defined in any sample in which there is a single return lower than
-100%, which is the case for four of the factors in the table. For these values we simply report the maximum
drawdown as being greater than one.
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In the stock market, Daniel and Moskowitz (2016) document that momentum portfolios

“experience infrequent and persistent strings of negative returns,” or “momentum crashes.”

While skewness may be an adequate measure of tail risk in serially independent returns,

the possibility of serial correlation motivates us to also consider maximum drawdown as a

measure of the importance of momentum crashes. Our results show that if there are any

option momentum crashes, then they must be regarded as mild, at least relative to the

strategy’s average return. Investment practitioners often compute the so-called “Calmar

ratio” by dividing annualized returns by the maximum drawdown. The value obtained for

the cross-sectional momentum portfolio is 1.34. In contrast, the Fama-French UMD factor

has a Calmar ratio that is around 0.1 over its entire history, which is the result of a drawdown

exceeding 75% in the early 1930s. Examining UMD over our own sample period lowers its

Calmar ratio to just 0.08. Option momentum therefore has a lower maximum drawdown

but an average excess return that is perhaps ten times higher. While the tail risk in cross-

sectional short-term reversal is somewhat greater, the Calmar ratio is still 0.67. Thus, while

we cannot rule out the possibility that a “Peso problem” hides some unrealized tail event,

there is simply no evidence that the returns on momentum or reversal – at least when

implemented with individual straddles – are justified on the basis of their exposure to crash

risk.

In order to assess the stability of momentum and reversal, we examine five-year moving

averages of the returns to each of these portfolios, focusing on cross-sectional strategies

formed using individual straddles. The results, in Figure 2, show that these moving averages

are positive for both strategies at all times. The included 95% confidence intervals further

indicate that the momentum return has been significantly positive in every five-year interval

in our sample.
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5.2 Factor adjustment

We now address the issue of whether the profitability of momentum and reversal strategies

is subsumed by other factors that are already in the literature. Though the literature gives

little guidance on what factors to include, a notable exception is Horenstein et al. (2019),

who propose a four-factor model. This model includes the excess return on short delta-

hedged SPX options as well as high-minus low portfolios formed on the basis of firm size,

idiosyncratic volatility, and the difference between implied and historical volatilities.

In the interest of subjecting reversal and momentum to a somewhat stronger test, we

also augment the HVX model with the same additional three factors used earlier, namely

long/short factors based on the implied volatility term spread and the slope of the implied

volatility smirk in addition to the equally weighted short equity straddles return. While

HVX find that the term spread factor is redundant, they draw this conclusion from analysis

that does not include momentum or reversal as test assets. We believe that including this

factor, which has the second highest Sharpe ratio, is conservative given our purposes.

Table 9 reports the results of these regressions. We report results for cross-sectional

strategies based on individual options and for strategies formed from industry and factor

portfolios.

To summarize, for strategies based on individual straddles, momentum survives factor

adjustment while reversal does not. In particular, reversal is mostly explained by the loadings

on the volatility difference variable of Goyal and Saretto (2009) and the implied volatility

term spread of Vasquez (2017), which have much larger premia than most other factors.

This suggests that reversal profits are related to the tendency of options with high implied

volatility, either relative to actual or longer-term implied volatility, to underperform. It

is possible that volatility differences reflect behavioral overreaction, in that high straddle

returns in the recent past cause short-term implied volatilities to increase too much. This
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hypothesis may be indistinguishable from one in which high past option returns are correlated

with order imbalances (Muravyev 2016) or intermediary capital (He and Krishnamurthy

2013), either of which may produce higher implied volatilities and lower future returns. In

any case, while the findings in Table 9 do not negate our finding of short-term reversal, they

imply that it is not a distinct source of expected return.

In contrast, the momentum alpha is large and highly significant in both regressions based

on individual straddles. Other factors do explain some of the variation in momentum returns,

and the alpha is either moderately smaller or slightly higher than the unconditional mean

in Table 8, but it is clear that momentum profits are not simply an expression of sensitivity

to the other factors.

Industry-based strategies lead to similar results under factor adjustment. The alpha of

the short-term strategy is more positive but still insignificant. Using the longer formation

period, we find that factor adjustment explains little of the return on industry momentum.

The alpha of the strategy is positive and significant for both models.

The strong short-term momentum of factor portfolios is completely explained by factor

exposure. The positive return on the “2 to 12” momentum strategy actually becomes signif-

icantly negative after factor adjustment, which is mostly due to its strong exposure to Goyal

and Saretto’s (2009) implied minus historical volatility factor.

To sum up, momentum in individual straddle returns and industry portfolio returns are

the only two strategies whose average returns are significant, with the same sign, both with

and without factor adjustment, for both models.

5.3 Dynamic betas

Similar to Grundy and Martin (2001), firms in the winner portfolio are likely those whose

straddles are more positively exposed to risk factors, such as aggregate volatility, when those

risk factors exhibited positive surprises over the formation period. When past aggregate
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volatility shocks were on average negative, then the winners will tend to be those with low

volatility betas. This induces time variation in the momentum strategy’s factor loadings,

which will depend on the realization of factors over the formation period. If risk premia are

also time varying, it is possible that the interaction of betas and risk premia could explain

the momentum strategy’s profitability.

To investigate this issue, we first test whether winner and loser portfolios exhibit dif-

ferences in factor sensitivities that are positively related to the factor performance over the

formation period. For risk factors, we choose those likely relevant for the options market

and with clear economic interpretations. Specifically, we examine factors that are designed

to capture market return, volatility, and jump risks.

The market return factor is motivated by CAPM and measured by the return on the S&P

500 Index. The latter two risk factors have been extensively motivated and documented in

the option pricing literature (e.g., Heston 1993 and Bakshi et al. 1997), though they can

be measured in a number of different ways. In our first and main specification, our proxy

for aggregate volatility risk is the return on the one-month at-the-money S&P 500 Index

straddle, and our jump factor is the return on a one-month S&P 500 put option with Black-

Scholes delta closest to -0.25. In our second specification, we follow Cremers et al. (2015) by

using S&P 500 Index straddles of different maturities to construct a portfolio with nonzero

vega but zero gamma, which is interpreted as a pure volatility factor. Similarly, a portfolio

with zero vega but nonzero gamma is interpreted as a jump factor. The third factor model we

consider uses the CBOE’s VIX and SKEW indexes to construct volatility and jump factors.

All factors are in excess of the risk-free return.

Because results turn out to depend little on the model chosen, we focus only on the first

one. Implementation details and results for the Cremers et al. (2015) vega/gamma model

and the model based on VIX and SKEW factors are available in the internet appendix.

We follow Grundy and Martin (2001) and characterize the formation period factor re-
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alizations as either “down,” “flat,” or “up.” Down realizations are at least one standard

deviation below the factor’s mean, up realizations are at least one standard deviation above

the mean, and flat realizations are in between. We then run the following regression of the

returns of the winner-minus-loser spread portfolio (rHL,t) for the holding period t:

rHL,t = a + [ bdown D
down,mkt
t + bflat D

flat,mkt
t + bup D

up,mkt
t ] rmkt,t

+ [ sdown Ddown,vol
t + sflat D

flat,vol
t + sup Dup,vol

t ] rvol,t

+ [ edown D
down,jmp
t + eflat D

flat,jmp
t + eup D

up,jmp
t ] rjmp,t + εt,

where rmkt,t, rvol,t, and rjmp,t are three risk factor returns, and dummy variable Dδ,j is

equal to 1 if the cumulative performance of factor j over the formation period was of type

δ = down, flat, up and 0 otherwise. bδ, sδ, and eδ represent the corresponding factor betas,

which are conditional on the factor’s performance over the formation period being of type δ.

If the mechanism in Grundy and Martin (2001) for time-varying factor loadings is at work,

then they should be higher for δ = up type than for δ = down.

Table 10 reports the results of estimating this regression model when we examine the

benchmark momentum strategy on individual straddles with the 2 to 12-month formation

period. In addition to the full model, we also examine restricted cases in which only one or

two factors are included. Columns (1)-(3) report the models when only one factor is used.

From column (1), the winner minus loser spread portfolio does not load on the market factor

following any type of market factor performance over the formation period, as indicated

by the three insignificant estimates on bdown, bflat, bup. In column (2), we observe that the

spread portfolio depends positively on the volatility factor following a high realization of that

factor (sup > 0). While the difference between sup and sdown is not statistically significant,

it is nevertheless consistent with the Grundy and Martin (2001) mechanism. In column (3),

we see that the spread does not load significantly on the jump factor following high or low

realizations of that factor.
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Columns (4) to (7) examine multifactor specifications. Except in one case following

“flat” realizations. we see that the momentum strategy does not load significantly on market

returns, which is not surprising given that the straddles are constructed to be delta-neutral.

Loadings on the volatility factor are significant in some cases following “up” realizations

of the volatility factor, once again weakly signaling that the Grundy and Martin (2001)

mechanism may be at work. Loadings on the jump factor are generally insignificant. The

one exception, in column (7), shows a negative loading on the jump factor following a high

jump factor realization. This is opposite the expected sign. Overall, the evidence is therefore

limited that the straddle momentum strategy exhibits time-varying risk factor sensitivities

that depend on the factor performance over the formation period.

Although weak, the evidence nevertheless raises the possibility that time-varying factor

loadings may explain a portion of the profit of the straddle momentum strategy if factor risk

premia are also time-varying. To test this possibility, we estimate and hedge out the time-

varying factor exposures of the momentum strategy and evaluate the profit of the hedged

strategy returns. For example, for a three-factor model, the hedged return of the winner

minus loser spread portfolio is rHL,t − (bt rmkt,t + st rvol,t + et rjmp,t), where bt, st, and et are

time-varying factor exposures. Following Grundy and Martin (2001), we estimate the risk

factor model using a rolling window of the most recent 60 months (with a minimum of 36

months).

The bottom rows of Table 10 report the hedged returns of the momentum spread portfolio

when we use each risk factor model. Because of the slightly shortened sample period resulting

from the need to estimate factor loadings, we also report unhedged returns corresponding to

the period in which hedged returns are available. In all cases, hedging using time-varying

betas has almost no effect on average returns, which are all very close to the unhedged

average return of 0.0603 (with a t-statistic of 6.87). This appears mainly to be the result

of the long and short legs of the momentum strategy having similar average factor loadings
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and the time-variation in those loadings being small. Overall, the evidence suggests that

time-varying factor loadings are not an explanation for straddle return momentum.

The minor effects of risk adjustment is likely related to the fact that systematic risk in

straddles is less important than it is in stocks. For example, regressing stock returns on

the market factor yields an average R-square of 0.2 to 0.3, depending on the sample period.

Regressing straddle returns on the SPX straddle return results in an average R-square of

around 0.1. The greater importance of idiosyncratic returns means that momentum rankings

will have little to do with systematic risk, and the resulting momentum strategy will have

less of a tendency to have time-varying betas.

5.4 Spanning tests

In this section we ask whether any of the three momentum strategies we have analyzed

are redundant, meaning that they offer no risk-adjusted return other than that implied by

their exposure to another strategy. Given the relative weakness after factor adjustment of

strategies formed on a single month of past returns, we focus solely on the standard “2 to

12” formation period.

The form of these tests is simple. The returns on one long/short momentum portfolio

is taken as the dependent variable, while a different long/short momentum portfolio is the

independent variable.16 We also examine regressions in which the additional seven non-

momentum factors are used as additional controls. The results are reported in Table 11.

Panel A shows that individual straddle momentum is not spanned by industry or factor

momentum, whether or not the additional controls are included. While industry momentum

explains a portion of individual momentum, the amount is fairly small. Factor momentum

explains almost none of the returns on individual straddle momentum.

16We have also run regressions with two long/short momentum portfolios as independent variables. The
results we present suggest that one of these variables will be generally be irrelevant, which is in fact what
we find when including both.
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Panel B asks whether the returns on industry momentum can be explained. The results

here are clear: there is no industry momentum alpha after controlling for individual straddle

momentum. Factor momentum again appears relatively unimportant, and results are fairly

insensitive to the inclusion of other factors as controls.

Finally, Panel C tries to explain factor momentum returns. The table shows that the other

two long/short momentum portfolios are nearly unrelated to factor momentum, explaining

less than 2% of the variation in the realized returns on factor momentum.

In stocks, the results of Moskowitz and Grinblatt (1999) suggest the primacy of industry

momentum. Grundy and Martin (2001) dispute this conclusion, while Novy-Marx (2012)

shows that industry momentum is largely explained by its exposure to the Fama-French Up-

Minus-Down (UMD) factor. Our own results in straddles are analogous, but even stronger, as

industry momentum is fully explained by individual straddle momentum and itself explains

little variation in the other two momentum strategies.

As Novy-Marx (2012) notes, the one variety of industry momentum in stocks that is

not spanned by UMD is at very short horizons, with the formation period including only

the most recent month. In contrast, Table 7 shows that there is no short-term industry

momentum for straddles.

Given the relatively nascent literature on factors in option returns, it is possible that the

factors we consider are an incomplete representation of the true factor structure. Keeping

this in mind, our results nevertheless contrast sharply with Ehsani and Linnainmaa (2019)

and Gupta and Kelly (2019), who find that factor momentum explains most or all of the per-

formance of both individual stock and industry momentum. For straddles, factor momentum

explains almost none of the variation in other momentum strategy returns.

To summarize, Table 11 suggests that there are two distinct sources of priced momentum,

individual and factor. As shown in Table 9, however, only the former survives risk adjust-

ment. Our remaining analysis therefore focuses on the standard cross-sectional momentum
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strategy constructed from individual straddles.

5.5 Consistency in the cross section

In this section, we investigate how pervasive momentum and reversal are by examining

different subgroups of the cross section of straddles. There are several motivations for doing

this. First, if these straddle return anomalies are confined to small and illiquid stocks, which

make up a small portion of the overall market, they may be regarded as less important

economically and less relevant to investors (Fama and French 2008 and Hou et al. 2020).

Second, a confirmation of those anomalies in most or all of the subgroups would mitigate the

concern that they are the outcome of data snooping. Third, if they are more prominent in

the subgroups in which traders face greater limits to arbitrage (Shleifer and Vishny 1997),

then mispricing would receive more credibility as their underlying source.

We first investigate short-term reversal in Panel A of Table 12. To generate each column,

we perform 3-by-3 sequential double sorts of straddles every third Friday, first on the condi-

tioning variable shown in the column header, and then on the straddle return at the 1-month

lag. Within each tercile of the conditioning variable, we compute equal-weighted portfolio

returns and report the profitability of the strategy that buys the highest tercile of formation

period straddle returns and shorts the lowest. The bottom rows show the differences in

spread between the lowest and highest terciles of the conditioning variable.

We consider the following five conditioning variables: firm size, measured by the stock’s

most recent market equity capitalization; stock illiquidity, proxied by the average Amihud

(2002) illiquidity measure over the last year; option illiquidity, measured by the average

percentage bid-ask spread of the puts and calls in each straddle, also averaged over the past

12 months; analyst coverage; and, finally, the most recent credit rating.17

17Following Avramov et al. (2007), we use S&P Long-Term Domestic Issuer Credit Ratings, which is
available from the Compustat S&P Ratings database. These data are not available after February 2017.

33



The first four variables proxy for impediments to arbitrage in the options market. While

firm size and stock illiquidity are typically used as proxies of the costs of trading stocks,

options on the stocks with small size and high illiquidity also tend to be less liquid and more

costly to trade. As such, they can be seen as indirect measures of the costs of trading options

faced by arbitrageurs. On the other hand, high option illiquidity provides a direct indicator

of the high costs of trading options.

Analyst coverage may proxy for either the diffusion rate of public information flow or

information uncertainty (Hong et al. 2000 and Zhang 2006). Options on the stocks with

lower analyst coverage are likely slower in incorporating public information. They may

also experience more speculative activities from irrational investors as a result of their high

information uncertainty. This poses a convergence risk that could deter option arbitrage

activity. In stocks, studies such as Hong et al. (2000) and Zhang (2006) show that momentum

profits are greater for firms with lower analyst coverage.

Finally, Avramov et al. (2007) find that stock momentum exists only among stocks with

low credit ratings, and Avramov et al. (2013) find that the profitability of stock momentum

derives exclusively from periods of credit rating downgrades. As such, we add credit rating as

the last conditioning variable and ask whether credit ratings remain important in signaling

the profitability of momentum and reversal in straddle returns.

Panel A indicates that the tendency of straddles to reverse their most recent monthly

return permeates the entire cross section. It is evident among small and large firms and

among companies with low and high stock or option liquidity. It is present whether analyst

coverage is high or low, for all credit ratings, and does not depend on whether the firm

experienced a downgrade in the 12 months prior to the holding period.18 The table shows that

18For the analyses that exclude or include downgraded firms, we do not exactly follow the exclusion
choice of Avramov et al. (2013), which discards observations from six months before to six months after a
downgrade. This is because this approach suffers from a potential look-ahead bias. Instead, our exclusion
and inclusion choices can be feasibly implemented in real-time trading strategies. However, our findings are
robust if we adopt their exclusion design.
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reversal is more pronounced for stocks with higher levels of stock and option liquidity, which

makes microstructure-based explanations of short-run reversal less plausible. In addition,

reversal is more pronounced for stocks with low impediments to arbitrage (large size, high

analyst coverage, and more liquidity), suggesting that mispricing from an overreaction to

past shocks may not be the main explanation. Finally, we see that credit rating does not

exhibit any relation to the profitability of reversal. Overall, the results leave few clues about

the origins of short-run reversal.

Panel B reports the same analyses for straddle momentum. Like reversal, momentum

is pervasive in the cross section. Unlike reversal, however, momentum is more prominent

in stocks facing high impediments to arbitrage. This is consistent with the hypothesis that

underreaction to past shocks is a significant driver of the momentum phenomenon. Further,

momentum is stronger for low-grade stocks and becomes statistically insignificant for high-

grade stocks, which is similar to the results of Avramov et al. (2007), who find that stock

momentum is absent for high-grade stocks. It is different from Avramov et al. (2013),

however, in that straddle momentum remains significant for stocks that have not downgraded

recently, while stock momentum loses efficacy in this case.

In light of existing research (Gebhardt et al. 2005, Jostova et al. 2013) showing that stock

momentum has a spillover effect on other asset classes, it is natural to ask whether option

momentum would be affected by controlling for past stock returns. While a straightforward

mechanical link between stock and option momentum can be ruled out by the fact that

option momentum remains profitable even when dynamically delta-hedged. It is conceivable

that past stock returns are correlated with future changes in volatility, perhaps due to market

underreaction to common information.

Empirically, Cao and Han (2013) find that past stock returns predict option returns pos-

itively at horizons of 1-36 months, though the relation is not particularly strong or robust.

In our own sample of straddle returns, we find a relation that is slightly negative but in-
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significant. More importantly, the profitability of option momentum is equally strong among

firms with low and high past stock returns, suggesting no appreciable link between stock and

option momentum.

5.6 Transactions costs and margin

A natural question to ask is whether the profitability of the strategies we investigate are

robust to transactions costs. Accounting for transactions costs is difficult for a number of

reasons, however.

One is that option traders commonly use limit orders, so they tend not to be liquidity

takers in the traditional sense, and orders are often filled inside the quotes set by option

market making firms. When trading straddles and other option combinations, option ex-

changes offer trader additional avenues for price improvement using the so-called complex

order book. This allows a trader to post limit orders for multi-leg strategies, like a straddle,

at prices that would be better than those obtained by taking the bids or the asks of each

leg separately. Interestingly, posting an order to the complex book is something that is only

available to end users and not market makers. The market maker’s role is only to choose

whether or not to fill these orders. In some ways it is a reversal of taker/maker roles relative

to other markets. Market makers still earn an implicit spread, but it may be much less than

that implied by the quotes on individual legs.

Further, as Muravyev and Pearson (2020) show, even liquidity-taking strategies face costs

that are much less than those implied by end-of-day quoted spreads. They argue that this

is because the fair value is often closer to one side of the bid-ask quotes. When fair value

is closer to the ask, for example, we tend to see traders buying. Quotes overstate the cost

of trading because the actual difference between fair value and price paid is much less than

half the spread. It is also the case that option bid-ask spreads are constantly widening and

contracting (possibly the result of orders placed by non-market makers). This gives another
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way for the opportunistic trader to reduce costs relative to end-of-day quotes.

Another natural strategy for controlling transactions costs would be to only trade securi-

ties for which the expected return exceeds the transactions cost estimate. In our setting, this

can be accomplished by trading straddles that have a more extreme buy or sell signal and

that have relatively low bid-ask spreads. We believe that such transactions cost-optimized

strategies are standard in practice.

Finally, the after-cost performance of a strategy only tells us whether the signal on which

the strategy is based is useful when that signal is traded in isolation. It is quite possible that

any single signal would not be strong enough to generate positive after-cost returns. But at

the same time, a multi-signal strategy, which we believe would be more likely in practice,

might be highly profitable even after costs are accounted for.

With these considerations in mind, Table 13 reports returns on transactions cost-adjusted

average returns for the momentum and reversal strategies. Following the results in Table 5

of Muravyev and Pearson (2020), we consider one-way costs that are a fixed fraction of the

quoted half spread. “Algo” traders, for example, pay 20% of the half spread, a value that

follows from Muravyev and Pearson’s finding that algorithmic traders pay an effective half-

spread of $0.026 on average when trading at-the-money options, when the average quoted

half-spread is $0.128. “Adjusted” and “effective” half-spreads are 51% and 76%, respectively,

of the quoted values on average. We also consider cases with and without a cost to exit the

stock position that would result from the exercise of options that expire in the money. The

assumption of no cost would follow if those positions are exited in the closing auction. When

we impose a cost on liquidating stock, we assume that cost is equal to half of the closing

bid-ask spread.

In addition to the baseline strategies examined above, we consider strategies that are

optimized for transactions costs in two ways. First, we examine strategies based on extreme

deciles rather than quintiles, given that the higher average returns of decile-based strategies

37



are more likely to survive trading costs. Second, we consider strategies that avoid options

with bid-ask spreads above 10% of option midpoints, as these are clearly the costliest to

trade.

Panels A and B show that the main momentum and reversal strategies are not profitable if

one assumes that the entire quoted spread must be paid. However, portfolios that are formed

to account for transactions costs are quite profitable for both strategies under a number of

reasonable assumptions about transactions costs paid. Most notably, both strategies would

be highly profitable if one were able to achieve the level of transactions costs that Muravyev

and Pearson document of their “algo” traders, regardless of whether transactions costs must

be paid on stock liquidation.

Transactions costs weigh somewhat more on reversal than they do on momentum for

baseline strategies, but for transactions cost-optimized strategies the reduction in average

returns is similar. This is consistent with results from Table 12 that showed that reversal

was actually more profitable, even without accounting for transactions costs, among more

liquid stocks. As result, it is clearly more profitable to choose high-liquidity options when it

comes to trading reversal.

As we argued above, examining each strategy in isolation likely leads to an overstate-

ment of the importance of transactions costs. Panel C therefore shows the results of a

composite strategy formed by sorting stocks based on the average values of their reversal

and momentum z-scores. We find that mean returns after transactions costs are positive for

the decile/low spread portfolio even if the full effective spread is paid, though when stock

liquidation costs are taken into account the significance of this positive mean is lost. Nev-

ertheless, the composite strategy survives relatively large transactions costs, indicating that

our results are highly relevant, both for liquidity takers and market makers.

Since our option momentum and reversal strategies involve written option positions, we

investigate the impact of margin requirements. Following Goyal and Saretto (2009) and
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Santa-Clara and Saretto (2009), we compute margin requirements for the option positions

in the short portfolios by implementing the Standard Portfolio Analysis of Risk (SPAN)

system, which is a widely used scenario analysis algorithm. Two key factors are necessary

in SPAN, the range of the underlying stock price movement and the range of the underlying

volatility movement. Every expiration Friday of the month, we follow Goyal and Saretto

and use ± 15% of the underlying price on that day for the former factor, with progressive

increments of 3%, and ± 10% of the level of implied volatility on that day for the latter

one. We then calculate the price of each option using the Black and Scholes (1973) model

under each scenario and determine the margin of that option by the largest loss among those

scenarios.

We define the initial margin ratio as M0/V0, where M0 is the initial margin when opening

a short option position and V0 equals the option price when the short position is opened.

Since the short portfolios are equally weighted, we calculate the portfolio-level margin ratio

by taking an equal-weighted average of the ratios for individual firms in the short portfolio.

This measures how much additional capital an investor needs to set aside, for every $1

bet on the zero-cost option momentum or reversal spread strategies, in an account holding

approximately risk-free assets. As such, the return to the momentum or reversal spread

strategy that accounts for margin is equal to the inverse initial margin ratio (V0/M0) times

the return to the strategy when margin is not considered.19

The last column of Table 13 reports the impact of margins. After accounting for margins,

the returns shrink by 50%-55% for momentum, reversal, and composite strategies, suggesting

an average initial margin ratio slightly above 2 for those strategies. But all the margin-

19Suppose an investor shorts a straddle with a total value of $1, which requires that the investor post
$M in margin. To implement a zero-cost long-short option strategy betting an equal dollar amount on
both long and short legs, this investor would then buy a straddle with a $1 value using the proceeds from
the short position. The additional capital needed from this investor and deposited in the margin account
for maintaining the long-short option positions is therefore still $M , which is invested in a risk-free asset.
Hence, the corresponding portfolio return in excess of risk-free rate should be (1/M)rlong − (1/M)rshort +
(M/M)rf−rf = (1/M)(rlong−rshort), where rlong, rshort, and rf are returns on the long and short straddles
and risk-free rate, respectively.
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adjusted returns remain highly significant, albeit with a slight drop in statistical significance.

In sum, momentum and reversal strategies remain highly profitable after accounting for

margin.

6 Summary

This paper has documented continuation and reversal patterns in the cross-section of option

returns on individual stocks. These patterns are highly significant, robust, and pervasive.

Most significantly, option returns display momentum, meaning that firms whose options

performed well in the previous 6 to 36 months are likely to see high option returns in the next

month as well. Momentum is present whether we measure past performance on a relative

basis (“cross-sectional momentum”) or an absolute basis (“time series momentum”). It is

profitable in every five-year subsample and is far less risky than short straddle positions

on the S&P 500 Index or individual stocks. Further, returns to these strategies show no

evidence of the momentum crashes that periodically affect stocks, though it is possible that

our sample is too short to detect such phenomena.

Because we work with delta-hedged option positions, our results are unexplained by stock

momentum. The profitability of the strategy is also unaffected by controlling for other option

characteristics, such as the difference between implied and historical volatilities, and is also

robust to adjustment using factors constructed from these characteristics.

While momentum is also present in industry and factor portfolios, neither of these ver-

sions of the momentum strategy delivers positive alphas after controlling for other returns.

Industry momentum is subsumed by individual firm momentum, while the reverse is not

true. Factor momentum is almost completely distinct from individual firm momentum, but

its positive mean turns into a negative alpha after adjustment using the model of Horenstein

et al. (2019) or an extension of it.

40



Though less robust to controls and methodology, we also find evidence of short-term

cross-sectional reversal in option returns, in that firms with options that perform relatively

well in one month tend to have options that perform relatively poorly in the next month.

While the effect is highly stable over time, its average return can be explained by exposure

to other option factors, most importantly the long/short factors formed on the basis of the

difference between short-term implied volatility and either historical (Goyal and Saretto

2009) or long-term implied (Vasquez 2017) volatility. A high option return in one month

tends to raise implied volatility more than it raises future realized volatility, which leads

to lower future returns. Reversal is also absent when we implement daily dynamic delta

hedging.

We find no evidence of long-run reversal in option returns, which is in stark contrast to

the behavior of stocks. Moreover, at the 2- to 3-year horizons at which stocks start showing

a tendency to reverse, option returns continue to show momentum. These result supports

the view, advocated by Conrad and Yavuz (2017), that momentum and long-run reversal

are distinct phenomena, with different root causes.

We address the question of whether risk exposures explain the returns to momentum in

several ways. First, in an approach based on option theory, we neutralize the momentum

strategy’s returns to delta and/or vega risk, the former by daily delta hedging and the latter

by examining returns on VIX portfolios. Though neutralized strategies are less volatile

and presumably less dependent on systematic risk, we find that they are if anything more

profitable than our baseline strategies. Secondly, we analyze exposures to economically

motivated factors, finding that momentum has no significant exposure to factor risk, either

unconditionally or conditional on past factor realizations. Lastly, we show that momentum

has little apparent crash risk and a standard deviation that is lower than those of many

other option strategies. Thus, if risk premia are the main driver of momentum profits, then

the risks priced in equity options must be subtle and substantially different from those that
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are commonly thought to drive option risk premia.

We can also eliminate several other potential explanations for momentum. First, we can

rule out that momentum arises purely as the result of cross-sectional variation in uncondi-

tional expected returns. The lack of long-run reversal suggests that an explanation involving

delayed overreaction, which features in the models of Daniel et al. (1998) and Hong and

Stein (1999), is unlikely. And while our results may be consistent with underreaction, the

cause of that underreaction cannot be the disposition effect (Grinblatt and Han 2005), as

the options we analyze expire in just one month. An investor who is reluctant to exit a

poorly performing option trade simply does not have that choice given the short lives of

these contracts.

We leave a number of questions for future research. Is momentum behavioral, or does it

suggest new sources of risk premia that are as yet undetected? Does long-horizon momentum

reflect variation in permanent or transitory (but persistent) expected returns? What is

responsible for short-run reversal, which is surprisingly more pronounced in liquid options?

It would be interesting to relate these puzzles to momentum phenomena in stock and bond

markets.
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Figure 1

Straddle returns regressed on lagged values from the same firms

This figure shows the slope coefficients and 95% confidence intervals from Fama-Macbeth regressions in which monthly straddle returns 

are regressed on a single lagged monthly straddle return for the same firm.  The length of the lag is shown on the horizontal axis.  The 

top and bottom panels are identical except for the range of lags considered.  Confidence intervals are computed using Newey-West 

standard errors with three lags.
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Figure 2

Five-year moving averages of strategy returns

This figure reports the rolling five-year average return on the short-term reversal (lag 1) and momentum (lags 2 to 12) factors.  Dotted 

lines denote 95% confidence intervals, which use Newey-West standard errors with 3 lags.
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Table 1

Summary statistics

Panel A: Main sample

Number of Mean Standard 10th Median 90th

observations deviation percentile percentile

Number of firms each month 1368.74 309.18 932 1442 1713

Straddle return 384672 -0.0528 0.8057 -0.8606 -0.2283 0.9403

Implied volatility (IV) 384540 0.4542 0.2416 0.2138 0.3970 0.7673

Historical volatility (HV) 374668 0.4531 0.2535 0.2122 0.3937 0.7657

IV - HV 374537 -0.0030 0.1646 -0.1387 -0.0008 0.1325

IV term spread 384540 -0.0067 0.0516 -0.0564 -0.0012 0.0363

IV smirk slope 384540 -0.0306 0.0863 -0.0986 -0.0296 0.0297

Equity market capitalization ($ billions) 383836 10.6489 31.0284 0.3995 2.4264 22.9442

Idiosyncratic volatility 383636 0.0225 0.0166 0.0084 0.0181 0.0414

Analyst coverage 363525 11.9698 7.7733 3.0000 10.0000 23.0000

Stock illiquidity 382174 0.0071 0.2112 0.0001 0.0008 0.0100

Option illiquidity 384672 0.1718 0.0955 0.0612 0.1549 0.3109

Panel B: Sample with VIX returns

Number of Mean Standard 10th Median 90th

observations deviation percentile percentile

Number of firms each month 557.73 234.18 252 561 843

Static straddle return 156165 -0.0438 0.7904 -0.8570 -0.2139 0.9558

Dynamic straddle return 156165 -0.0512 0.6450 -0.6885 -0.1713 0.7056

Number of strikes in VIX portfolios 8.00 5.62 4 7 13

Static VIX return 156165 -0.0835 1.1881 -0.8894 -0.4832 1.1537

Dynamic VIX return 156165 -0.0752 0.6295 -0.5477 -0.1944 0.4622

This table reports summary statistics for main variables in this study.  Returns are reported on a monthly basis. All the 

numbers are statistics on the full panel of each variable, except that we report time series statistics for number of firms 

in each month. Panel A includes the main sample used throughout the paper, which requires positive open interest for 

both the call and the put in the straddle.  Implied volatility is an average of the values for the 30-day at-the-money call 

and put values.  Historical volatility is a 250-day rolling standard deviation of stock returns.  The IV term spread is the 

difference between the 60-day and 30-day at-the-money implied volatilities, while the IV smirk slope is the difference 

between the implied volatilities of the 30-day call with delta of 0.3 and the  30-day put with a delta of -0.3.  

Idiosyncratic volatility is the standard deviation of the residuals of a 22-day rolling regression using the Fama-French 

(1993) factors.  Stock illiquidity is the Amihud ratio, averaged over the previous 12 months.  Option liquidity is the 

weighted average of the bid-ask spreads of the call and put in each straddle, averaged over the previous 12 months.  

Panel B summarizes the subsample in which both straddle and VIX returns are non-missing with positive open interest.  

In this subsample we report returns on static strategies and on strategies that are dynamically delta hedged.
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Table 2

Univariate sorts

Low 2 3 4 High High - Low

1 1 -0.0408 -0.0453 -0.0483 -0.0607 -0.0817 -0.0409

(-2.52) (-2.77) (-3.08) (-3.76) (-5.24) (-6.18)

1 2 -0.0378 -0.0427 -0.0532 -0.0619 -0.0719 -0.0341

(-2.41) (-2.62) (-3.22) (-3.79) (-4.54) (-4.41)

1 6 -0.0584 -0.0571 -0.0536 -0.0459 -0.0392 0.0193

(-3.54) (-3.50) (-3.07) (-2.72) (-2.38) (2.32)

1 12 -0.0707 -0.0532 -0.0490 -0.0329 -0.0305 0.0402

(-4.38) (-3.06) (-2.74) (-1.88) (-1.72) (4.94)

2 12 -0.0777 -0.0617 -0.0453 -0.0355 -0.0155 0.0622

(-4.80) (-3.63) (-2.58) (-2.08) (-0.85) (7.97)

2 24 -0.0719 -0.0596 -0.0460 -0.0266 -0.0122 0.0596

(-3.83) (-3.45) (-2.40) (-1.40) (-0.67) (7.28)

2 36 -0.0820 -0.0717 -0.0375 -0.0311 -0.0240 0.0580

(-4.33) (-3.89) (-1.88) (-1.49) (-1.27) (6.51)

13 24 -0.0548 -0.0528 -0.0482 -0.0360 -0.0234 0.0314

(-2.87) (-2.89) (-2.60) (-1.96) (-1.34) (3.99)

13 36 -0.0686 -0.0651 -0.0411 -0.0380 -0.0288 0.0398

(-3.64) (-3.34) (-2.08) (-1.95) (-1.56) (4.18)

25 36 -0.0641 -0.0546 -0.0463 -0.0410 -0.0381 0.0261

(-3.55) (-2.97) (-2.40) (-2.10) (-2.11) (3.35)

Characteristic

Low 2 3 4 High High - Low

IV - HV -0.0186 -0.0365 -0.0454 -0.0682 -0.1220 -0.1034

(-1.10) (-2.18) (-2.50) (-4.12) (-9.51) (-9.48)

Idiosyncratic vol -0.0543 -0.0474 -0.0476 -0.0540 -0.0793 -0.0249

(-2.86) (-2.75) (-2.92) (-3.59) (-5.90) (-1.99)

Market cap -0.0815 -0.0501 -0.0441 -0.0530 -0.0573 0.0241

(-6.09) (-3.54) (-2.71) (-3.07) (-3.11) (2.07)

IV term spread -0.0995 -0.0646 -0.0499 -0.0429 -0.0278 0.0717

(-7.60) (-4.12) (-2.91) (-2.44) (-1.69) (7.92)

IV smirk slope -0.0675 -0.0543 -0.0476 -0.0531 -0.0626 0.0049

(-4.80) (-3.20) (-2.84) (-3.27) (-4.11) (0.78)

Min and max lag in 

formation period

This table reports means and t-statistics from univariate quintile sorts.  Zero delta straddles are allocated to 

portfolios based on lagged returns (Panel A) or other stock-level characteristics (Panel B).  Average returns are per 

month.  T-statistics, in parentheses, are computed using Newey-West standard errors with three lags.

Panel A: Portfolios formed on the basis of lagged straddle returns

Panel B: Portfolios formed on the basis of other lagged characteristics
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Table 3

Fama-MacBeth regressions

-0.0357 -0.2045 -0.9812 0.0000 0.3491 0.0328 0.0154

(-1.82) (-7.60) (-3.77) (-1.03) (5.62) (1.53)

1 1 -0.0581 -0.0202 0.0030

(-3.72) (-6.46)

1 1 -0.0397 -0.0140 -0.2040 -0.8390 0.0000 0.3228 0.0499 0.0183

(-1.98) (-4.80) (-7.20) (-3.06) (-0.84) (5.09) (1.94)

1 2 -0.0577 -0.0231 0.0030

(-3.71) (-4.79)

1 2 -0.0383 -0.0151 -0.2013 -0.8696 0.0000 0.3255 0.0576 0.0192

(-1.92) (-3.24) (-6.83) (-3.18) (-0.76) (4.84) (1.94)

1 6 -0.0525 0.0223 0.0031

(-3.28) (2.61)

1 6 -0.0239 0.0373 -0.1866 -1.1848 0.0000 0.3589 0.0759 0.0211

(-1.16) (4.54) (-5.95) (-3.96) (-0.79) (4.76) (1.94)

1 12 -0.0449 0.0705 0.0040

(-2.67) (5.77)

1 12 -0.0100 0.0796 -0.1958 -1.4372 0.0000 0.3877 0.0955 0.0248

(-0.47) (6.16) (-4.87) (-4.39) (-2.27) (4.46) (1.96)

2 12 -0.0424 0.0949 0.0044

(-2.49) (8.39)

2 12 -0.0104 0.0964 -0.1713 -1.3680 0.0000 0.4486 0.0760 0.0252

(-0.49) (8.23) (-4.37) (-4.21) (-2.20) (4.69) (1.72)

2 24 -0.0350 0.1386 0.0051

(-1.93) (8.03)

2 24 -0.0024 0.1392 -0.1513 -1.4197 0.0000 0.4864 0.1063 0.0300

(-0.11) (7.47) (-3.32) (-3.77) (-3.04) (4.12) (1.57)

2 36 -0.0383 0.1713 0.0063

(-2.04) (6.77)

2 36 -0.0077 0.1769 -0.1353 -1.3825 0.0000 0.5037 0.0928 0.0372

(-0.32) (7.01) (-2.70) (-2.92) (-2.93) (3.70) (0.91)

13 24 -0.0382 0.0582 0.0033

(-2.13) (5.17)

13 24 -0.0168 0.0535 -0.2007 -1.1641 0.0000 0.4741 0.0427 0.0252

(-0.73) (4.86) (-5.06) (-3.39) (-1.76) (4.65) (0.87)

13 36 -0.0411 0.0970 0.0051

(-2.22) (4.70)

13 36 -0.0221 0.0978 -0.1598 -1.0789 0.0000 0.5392 0.0480 0.0318

(-0.92) (4.95) (-3.43) (-2.61) (-2.09) (4.48) (0.61)

25 36 -0.0466 0.0353 0.0034

(-2.56) (2.92)

25 36 -0.0296 0.0366 -0.1269 -0.8479 0.0000 0.5043 0.0592 0.0249

(-1.29) (2.99) (-3.22) (-2.35) (-1.38) (4.84) (1.04)

This table reports the results of Fama-MacBeth regressions in which monthly zero delta straddle returns are the dependent variable.  Independent 

variables include a measure of lagged returns and five other stock-level characteristics.  T-statistics, in parentheses, are computed using Newey-

West standard errors with three lags.

Avg. CS R
2

Intercept Past return

Min and max lag in 

formation period IV - HV

Idiosyncratic 

vol Market cap

IV term 

spread IV smirk slope
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Table 4

Comparison of option benchmarks

Low High High - Low Low High High - Low Low High High - Low Low High High - Low

1 1 -0.0420 -0.0829 -0.0408 -0.0592 -0.0600 -0.0008 -0.0659 -0.1311 -0.0652 -0.1110 -0.0752 0.0358

(-2.41) (-4.95) (-4.94) (-4.18) (-4.16) (-0.09) (-2.49) (-5.39) (-5.18) (-8.83) (-5.10) (4.03)

1 2 -0.0259 -0.0675 -0.0415 -0.0574 -0.0483 0.0091 -0.0537 -0.1142 -0.0605 -0.1093 -0.0592 0.0501

(-1.51) (-3.97) (-4.28) (-4.20) (-3.16) (0.91) (-2.02) (-4.34) (-4.38) (-8.61) (-3.80) (4.98)

1 6 -0.0573 -0.0340 0.0233 -0.0755 -0.0350 0.0405 -0.0840 -0.0722 0.0118 -0.1180 -0.0506 0.0674

(-3.23) (-1.98) (2.56) (-5.52) (-2.33) (4.93) (-3.27) (-2.78) (0.87) (-9.60) (-3.46) (7.43)

1 12 -0.0687 -0.0323 0.0364 -0.0813 -0.0253 0.0559 -0.1031 -0.0730 0.0301 -0.1125 -0.0496 0.0630

(-3.88) (-1.79) (4.13) (-5.89) (-1.67) (7.47) (-4.00) (-2.69) (2.67) (-8.81) (-3.34) (7.66)

2 12 -0.0709 -0.0175 0.0534 -0.0817 -0.0161 0.0655 -0.1036 -0.0666 0.0370 -0.1187 -0.0453 0.0733

(-4.04) (-0.96) (5.98) (-5.75) (-1.04) (8.27) (-4.11) (-2.47) (2.57) (-9.40) (-3.03) (8.00)

2 24 -0.0711 -0.0257 0.0454 -0.0827 -0.0227 0.0600 -0.1235 -0.0665 0.0570 -0.1032 -0.0464 0.0568

(-3.77) (-1.37) (4.40) (-5.49) (-1.44) (6.93) (-4.45) (-2.23) (3.89) (-6.99) (-2.92) (4.75)

2 36 -0.0742 -0.0384 0.0358 -0.0782 -0.0249 0.0532 -0.1204 -0.0785 0.0419 -0.1091 -0.0519 0.0572

(-3.84) (-2.06) (3.57) (-4.86) (-1.52) (6.01) (-4.58) (-2.68) (2.48) (-7.79) (-3.10) (5.07)

13 24 -0.0579 -0.0275 0.0304 -0.0702 -0.0339 0.0363 -0.1145 -0.0605 0.0540 -0.1057 -0.0594 0.0463

(-3.00) (-1.51) (2.62) (-4.42) (-2.10) (4.53) (-4.37) (-1.94) (2.88) (-7.86) (-3.98) (5.92)

13 36 -0.0744 -0.0225 0.0485 -0.0663 -0.0350 0.0310 -0.1194 -0.0625 0.0545 -0.1002 -0.0641 0.0357

(-4.03) (-1.14) (4.58) (-4.02) (-2.16) (4.28) (-4.67) (-1.99) (3.14) (-7.06) (-4.01) (3.50)

25 36 -0.0639 -0.0390 0.0249 -0.0642 -0.0405 0.0238 -0.1024 -0.0869 0.0155 -0.0963 -0.0666 0.0297

(-3.33) (-2.08) (2.51) (-4.01) (-2.43) (3.38) (-3.93) (-2.95) (0.99) (-6.74) (-4.31) (3.25)

Min and max lag in 

formation period

Univariate quintile sorts on individual momentum for option returns. Four methodologies for computing option returns are considered. The sample examined is an intersection of the 

samples of straddle and VIX portfolio returns. When forming momentum signals, we require nonmissing return observations for at least two thirds of the formation period. Static hedges 

have zero delta only at the start of the holding period. Dynamic hedges rebalance to zero delta daily by taking a position in the underlying stock.  If the delta of any option is missing, we 

impute it using the current stock price and the most recent non-missing implied volatility from the same option.

Straddle (static hedge) Straddle (dynamic hedge) VIX portfolio (static hedge) VIX portfolio (dynamic hedge)
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Table 5

Fama-MacBeth regressions with longer lags

# of 

Intercept 1 2 to 12 13 to 24 25 to 36 37 to 48 49 to 60 months

(1) -0.0581 -0.0202 0.0030 280 1235.3

(-3.72) (-6.46)

(2) -0.0451 -0.0252 0.0968 0.0085 269 750.6

(-2.63) (-7.10) (8.37)

(3) -0.0363 -0.0235 0.0888 0.0536    0.0141 257 541.0

(-1.99) (-5.34) (6.67) (4.29)       

(4) -0.0381 -0.0265 0.0809 0.0683 0.0301   0.0230 245 414.2

(-1.99) (-5.08) (5.05) (4.46) (2.11)      

(5) -0.0422 -0.0259 0.0611 0.0619 0.0164 0.0408  0.0322 233 325.7

(-2.11) (-4.57) (2.85) (3.13) (1.06) (2.40)     

(6) -0.0395 -0.0264 0.0714 0.0445 -0.0060 0.0532 0.0121 0.0486 221 261.2

(-1.89) (-3.46) (3.10) (1.97) (-0.31) (2.34) (0.64)    

Avg. CS R
2

Avg. obs. 

/ month

This table reports the results of Fama-MacBeth regressions in which monthly zero delta straddle returns are the 

dependent variable.  Independent variables include average returns over different past periods.  T-statistics, in 

parentheses, are computed using Newey-West standard errors with three lags.
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Table 6

Cross-sectional versus time series reversal and momentum

TS - CS Corr(CS, TS)

Low High High - Low Low High High - Low Mean

1 1 -0.0432 -0.0675 -0.0243 -0.0454 -0.0737 -0.0283 -0.0040 0.896

(-2.70) (-4.32) (-5.56) (-2.87) (-4.70) (-6.00) (-1.69)

1 2 -0.0432 -0.0639 -0.0207 -0.0468 -0.0695 -0.0227 -0.0019 0.883

(-2.72) (-4.00) (-4.42) (-2.98) (-4.42) (-4.50) (-0.86)

1 6 -0.0572 -0.0445 0.0127 -0.0591 -0.0439 0.0152 0.0024 0.851

(-3.50) (-2.70) (2.77) (-3.69) (-2.68) (3.34) (0.87)

1 12 -0.0609 -0.0336 0.0273 -0.0580 -0.0326 0.0255 -0.0018 0.831

(-3.66) (-1.93) (5.88) (-3.52) (-1.86) (5.15) (-0.61)

2 12 -0.0652 -0.0288 0.0364 -0.0619 -0.0233 0.0386 0.0022 0.868

(-3.99) (-1.65) (8.13) (-3.76) (-1.32) (7.73) (0.83)

2 24 -0.0617 -0.0244 0.0373 -0.0570 -0.0167 0.0403 0.0030 0.808

(-3.46) (-1.33) (6.65) (-3.16) (-0.91) (6.84) (0.77)

2 36 -0.0682 -0.0299 0.0382 -0.0605 -0.0252 0.0353 -0.0030 0.809

(-3.70) (-1.55) (5.82) (-3.26) (-1.30) (5.02) (-0.65)

13 24 -0.0523 -0.0336 0.0187 -0.0497 -0.0288 0.0209 0.0023 0.824

(-2.88) (-1.90) (4.20) (-2.74) (-1.63) (3.98) (0.80)

13 36 -0.0615 -0.0348 0.0267 -0.0548 -0.0330 0.0218 -0.0049 0.829

(-3.28) (-1.86) (4.16) (-2.91) (-1.78) (3.36) (-1.38)

25 36 -0.0575 -0.0401 0.0174 -0.0561 -0.0373 0.0188 0.0014 0.821

(-3.15) (-2.17) (3.76) (-3.09) (-2.01) (3.56) (0.43)

This table reports means and t-statistics of the returns on portfolios meant to capture cross-sectional and time series reversal and momentum.  For 

cross-sectional (CS) strategies, portfolios are determined based on whether the lagged average straddle excess return is above or below the cross-

sectional median.  For time series (TS) strategies, portfolio assignment depends on whether the lagged average excess return is positive or negative.  

The "TS - CS" column reports the difference between the time series high minus low spread and the cross-sectional high minus low spread.  Corr(CS, TS) 

is the correlation between the cross-sectional and time series high/low portfolios.  T-statistics, in parentheses, are computed using Newey-West 

standard errors with three lags.

Min and max lag in 

formation period

Cross-Sectional Strategies (CS) Time Series Strategies (TS)
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Table 7

Industry and factor momentum

Low 3 Middle 14 High 3 High - Low Low 3 Middle 6 High 3 High - Low

1 1 -0.0430 -0.0551 -0.0443 -0.0013 -0.0919 -0.0703 -0.0466 0.0453

(-2.36) (-3.29) (-2.31) (-0.08) (-4.99) (-4.74) (-2.44) (3.80)

1 2 -0.0430 -0.0543 -0.0459 -0.0029 -0.0935 -0.0662 -0.0505 0.0430

(-2.29) (-3.20) (-2.36) (-0.19) (-5.07) (-4.45) (-2.67) (3.71)

1 6 -0.0607 -0.0524 -0.0252 0.0355 -0.0925 -0.0671 -0.0471 0.0454

(-3.40) (-3.11) (-1.15) (2.09) (-5.08) (-4.36) (-2.47) (3.70)

1 12 -0.0731 -0.0497 -0.0104 0.0627 -0.0915 -0.0654 -0.0393 0.0522

(-4.03) (-2.88) (-0.51) (3.88) (-5.02) (-4.20) (-1.99) (3.99)

2 12 -0.0684 -0.0489 -0.0187 0.0497 -0.0878 -0.0668 -0.0400 0.0478

(-3.55) (-2.87) (-0.93) (3.22) (-4.64) (-4.38) (-2.00) (3.37)

2 24 -0.0610 -0.0478 -0.0146 0.0464 -0.0939 -0.0598 -0.0370 0.0569

(-3.10) (-2.68) (-0.69) (2.81) (-5.21) (-3.52) (-1.88) (4.46)

2 36 -0.0578 -0.0533 -0.0143 0.0435 -0.0858 -0.0680 -0.0410 0.0448

(-2.99) (-2.89) (-0.65) (2.41) (-4.17) (-4.12) (-2.11) (3.72)

13 24 -0.0417 -0.0475 -0.0351 0.0066 -0.0897 -0.0667 -0.0275 0.0622

(-1.90) (-2.75) (-1.67) (0.43) (-4.83) (-4.16) (-1.30) (4.63)

13 36 -0.0693 -0.0456 -0.0387 0.0306 -0.0929 -0.0655 -0.0389 0.0540

(-3.59) (-2.45) (-1.84) (1.78) (-4.93) (-3.89) (-1.92) (4.23)

25 36 -0.0567 -0.0489 -0.0361 0.0207 -0.0869 -0.0638 -0.0484 0.0385

(-2.75) (-2.66) (-1.74) (1.27) (-4.15) (-3.76) (-2.60) (2.98)

Min and max lag in 

formation period

This table reports means and t-statistics on industry and factor momentum portfolios.  For industry momentum in Panel A, we follow Moskowitz and 

Grinblatt (2004) and form 20 different industry portfolios, but of straddles instead of stocks.  In each month, we rank all industries on the basis of 

their average returns over some formation period.  We then form a portfolio from the top three, the bottom three, and the remaining 14.  Factor 

momentum, in Panel B, is constructed from a total of 12 different long-only straddle portfolios.  These include the high and the low quintiles behind 

five different long/short factors as well as the equally weighted straddle portfolio and the SPX straddle.  In each month, we rank all 12 long-only 

portfolios on the basis of their average returns over some formation period.  We then form a portfolio from the top three, the bottom three, and the 

remaining six.  Both panels show the performance of these strategies over the following month.  T-statistics, in parentheses, are computed using 

Newey-West standard errors with three lags.

Panel A: Industry portfolios Panel B: Factor portfolios
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Table 8

Risk and return for alternative strategies

Formation period:

Individual Industry Factor Individual Industry Factor

(low - high) (low - high) (high - low) (high - low) (high - low) (high - low)

Mean 0.0409 0.0013 0.0453 0.0622 0.0497 0.0478

(6.18) (0.08) (3.80) (7.97) (3.22) (3.37)

Standard deviation 0.124 0.256 0.220 0.141 0.266 0.209

Sharpe ratio 0.330 0.005 0.206 0.441 0.187 0.228

Skewness 0.636 0.078 0.403 0.267 -0.857 -0.282

Excess kurtosis 11.86 1.10 2.14 0.46 5.87 2.61

Maximum drawdown 0.738 >1 0.859 0.557 >1 0.998

IV - HV Idiosyncratic Market IV term IV smirk Short SPX Short EW stock

volatility cap spread slope straddle straddle

Mean 0.1034 0.0249 0.0241 0.0717 0.0049 0.1049 0.0567

(9.48) (1.99) (2.07) (7.92) (0.78) (2.52) (3.65)

Standard deviation 0.160 0.202 0.172 0.133 0.106 0.702 0.243

Sharpe ratio 0.646 0.123 0.140 0.538 0.046 0.149 0.234

Skewness 0.824 1.046 0.650 1.913 1.312 -1.316 -3.093

Excess kurtosis 2.62 5.35 1.44 10.60 6.80 2.22 15.88

Maximum drawdown 0.547 0.985 0.983 0.798 0.889 > 1 > 1

This table reports risk and return measures for 16 different portfolios constructed from zero delta straddles.  Panel A includes strategies from Tables 2 and 7, except that in all 

cases the long side is chosen to have the higher average return.  Panel B includes factors from prior literature, again constructed to have positive means.  The first five are 

long/short factors sorted on the difference between implied and historical volatilities (Goyal and Saretto, 2009), idiosyncratic volatility (Cao and Han, 2013), market capitalization 

(Cao at al., 2017), the implied volatility term structure slope (Vasquez, 2017), and the slope of the implied volatility smirk.  The last two factors are short only, where the short 

position is either an at-the-month S&P 500 Index straddle or an equally weighted portfolio of straddles on individual equities.  All values are in monthly decimal terms.  T-

statistics, in parentheses, are computed using Newey-West standard errors with three lags.  

-------------------  Lags 2 to 12  ------------------- -------------------  Lag 1 only  -------------------

Panel B: Factors based on prior research

Panel A: Factors formed on the basis of lagged straddle returns
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Table 9

Factor risk adjustment for the reversal and momentum strategies

Short Short

Idio. Market IV term IV smirk SPX EW stock

Intercept IV - HV volatility cap spread slope straddle straddle R2

1 1 -0.0155 0.1903 0.1585 -0.0277   -0.0134  0.1340

(-1.12) (2.11) (2.18) (-0.34)   (-0.76)   

1 1 -0.0103 0.0728 0.1263 -0.0391 -0.2407 0.0044 -0.0180 -0.0007 0.1702

(-0.74) (0.92) (2.05) (-0.48) (-2.89) (0.05) (-0.79) (-0.01)  

2 12 0.0497 -0.1188 0.1563 0.1818   0.0051  0.0497

(3.48) (-1.42) (1.57) (2.57)   (0.26)   

2 12 0.0646 -0.0970 0.1929 0.1984 -0.0966 0.0952 0.0478 -0.1961 0.0955

(4.24) (-0.96) (2.35) (2.93) (-0.90) (0.83) (2.10) (-2.34)  

1 1 0.0220 0.1012 -0.0680 -0.4066   -0.0460  0.0486

(1.00) (0.81) (-0.53) (-2.65)   (-1.52)   

1 1 0.0311 0.1787 -0.0163 -0.3826 0.0512 0.0966 -0.0103 -0.1497 0.0592

(1.24) (1.17) (-0.12) (-2.47) (0.29) (0.50) (-0.27) (-1.20)  

2 12 0.0485 -0.1263 0.4831 0.1476   -0.0286  0.0859

(2.26) (-0.89) (2.54) (0.89)   (-0.87)   

2 12 0.0723 0.0642 0.5421 0.1693 0.1247 -0.0658 0.0737 -0.4386 0.1570

(3.43) (0.41) (2.87) (1.09) (0.70) (-0.46) (1.88) (-4.41)  

1 1 -0.0001 -0.3466 -0.3080 -0.1625   0.0565  0.0847

(-0.01) (-3.64) (-3.19) (-1.26)   (1.46)   

1 1 0.0043 -0.3738 -0.2776 -0.1474 -0.0968 0.1625 0.0590 -0.0184 0.0902

(0.22) (-3.46) (-2.46) (-1.17) (-0.69) (1.01) (1.29) (-0.13)  

2 12 -0.0311 -0.6463 -0.2201 -0.0990   0.1185  0.2420

(-2.19) (-8.34) (-2.23) (-1.07)   (3.49)   

2 12 -0.0178 -0.5158 -0.1337 -0.0640 0.0883 0.1708 0.1710 -0.2250 0.2810

(-1.09) (-5.48) (-1.36) (-0.72) (0.89) (1.45) (4.18) (-1.94)  

This table reports the results of regressions in which a reversal or momentum factor is risk-adjusted using the  four-factor model of Horenstein, 

Vasquez, and Xiao (2019) or an extended model with three additional factors.  T-statistics, in parentheses, are computed using Newey-West 

standard errors with three lags.

Min and max lag in 

formation period

Individual Straddles

Industries

Factors
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Table 10

Time-varying factor exposures

(1) (2) (3) (4) (5) (6) (7)

a 0.0646 0.0649 0.0618 0.0677 0.0627 0.0645 0.0648

(8.08) (7.99) (7.78) (8.04) (7.87) (8.04) (8.05)

b down 0.2205 0.2811 0.0681 -0.0952

(0.49) (0.64) (0.15) (-0.23)

b flat -0.4511 -0.4599 -0.5830 -0.9692

(-1.57) (-1.56) (-1.68) (-2.40)

b up 0.0359 -0.0755 0.0401 -0.2161

(0.06) (-0.13) (0.07) (-0.34)

s down -0.0153 -0.0182 -0.0329 0.0071

(-0.77) (-0.90) (-1.01) (0.21)

s flat 0.0076 0.0083 0.0109 0.0404

(0.46) (0.48) (0.53) (1.71)

s up 0.0541 0.0582 0.0633 0.0906

(1.62) (1.75) (1.60) (2.32)

e down 0.0054 0.0007 0.0113 -0.0073

(0.74) (0.11) (1.00) (-0.56)

e flat 0.0012 -0.0046 -0.0007 -0.0201

(0.19) (-0.62) (-0.09) (-1.81)

e up -0.0083 -0.0128 -0.0154 -0.0341

(-1.05) (-1.54) (-1.39) (-2.83)

R 2
0.0148 0.0104 0.0028 0.0270 0.0186 0.0187 0.0452

b up  - b down -0.1846 -0.3566 -0.0279 -0.1209

(-0.25) (-0.49) (-0.04) (-0.16)

s up  - s down 0.0693 0.0765 0.0962 0.0835

(1.79) (1.97) (2.07) (1.79)

e up  - e down -0.0137 -0.0135 -0.0268 -0.0269

(-1.29) (-1.41) (-1.94) (-2.08)

Average hedged 0.0610 0.0609 0.0603 0.0605 0.0599 0.0592 0.0574

returns (6.98) (6.95) (6.83) (6.93) (6.86) (6.48) (6.34)

This table examines the effects of time-varying betas on momentum strategy returns.  It reports 

estimates of full and restricted versions of the regression

The three risk factors represent the excess returns on the S&P 500 Index, an at-the-money index 

straddle, and an out-of-the-money index put.  The dummy variables indicate whether the referenced 

factor had a low, medium, or high realization during the formation period.  The table reports coefficient 

estimates and t-statistics (in parentheses, using Newey-West standard errors with three lags), R-

squares, differences between coefficients, and average hedged momentum returns, where hedge ratios 

are time-varying and estimated using a rolling window of the most recent 60 months (with a minimum 

of 36 months).  For comparison, unhedged returns have a mean of .0603 and a t-statistic of 6.87.
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Table 11

Spanning tests for alternative momentum strategies

Intercept Individual Industry Factor R2
Intercept Individual Industry Factor R2

0.0622   N/A 0.0646   0.0955

(7.97)    (4.24)    

0.0514 0.2172  0.1679 0.0500 0.2007  0.2164

(6.59) (7.09)   (3.52) (6.46)   

0.0584  0.0794 0.0139 0.0653  0.0398 0.0980

(6.73)  (1.67)  (4.24)  (0.79)  

0.0473 0.2186 0.0852 0.1839 0.0509 0.2045 0.0629 0.2226

(5.68) (7.97) (1.93)  (3.57) (6.91) (1.33)  

0.0497  N/A 0.0723    0.1570

(3.22)   (3.43)     

0.0016 0.7731  0.1679 0.0293 0.6659   0.2696

(0.10) (7.23)   (1.49) (5.85)    

0.0509  -0.0263 0.0004 0.0703   -0.1130 0.1627

(3.39)  (-0.22)  (3.22)   (-0.84)  

0.0049 0.7887 -0.0890 0.1728 0.0262 0.6756  -0.1399 0.2783

(0.33) (6.93) (-0.77)  (1.28) (5.95)  (-1.11)  

0.0478  N/A -0.0178    0.2810

(3.37)   (-1.09)     

0.0369 0.1750 0.0139 -0.0223 0.0698   0.2830

(2.39) (1.71)  (-1.25) (0.79)    

0.0486  -0.0163 0.0004 -0.0135  -0.0597  0.2858

(3.26)  (-0.22)  (-0.80)  (-0.90)   

0.0370 0.2255 -0.0653 0.0196 -0.0199 0.1264 -0.0850  0.2915

(2.39) (1.93) (-0.83)  (-1.12) (1.33) (-1.21)   

This table performs spanning tests that compare the individual firm, industry, and factor momentum strategies.  In each panel, we report 

regressions in which we regress a single momentum strategy on a different momentum strategy, with or without the seven additional option 

factors (coefficients unreported) from Table 9 included as controls.  All momentum strategies use the "2 to 12" formation period.  T-statistics, in 

parentheses, are computed using Newey-West standard errors with three lags.

Panel B: Dependent variable is industry momentum

Panel C: Dependent variable is factor momentum

--------------------- Without additional factors --------------------- ----------------- With 7 additional option factors -----------------

Panel A: Dependent variable is individual straddle momentum
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Table 12

Pervasiveness of reversal and momentum

Firm Stock Option Analyst Credit

Size Illiquidity Illiquidity Coverage Rating

Low -0.0209 -0.0443 -0.0450 -0.0199 -0.0509 No downgrade -0.0457

(-3.00) (-5.33) (-6.27) (-2.95) (-5.24) (-6.26)

Medium -0.0366 -0.0384 -0.0346 -0.0363 -0.0471 Downgrade -0.0334

(-5.39) (-5.40) (-5.01) (-4.84) (-4.80) (-2.70)

High -0.0461 -0.0152 -0.0236 -0.0478 -0.0407 No rating -0.0269

(-6.05) (-2.25) (-3.39) (-6.03) (-4.06) (-4.41)

High - Low -0.0252 0.0292 0.0215 -0.0279 0.0102

(-2.75) (3.01) (2.46) (-2.98) (0.81)

Firm Stock Option Analyst Credit

Size Illiquidity Illiquidity Coverage Rating

Low 0.0544 0.0395 0.0435 0.0561 0.0571 No downgrade 0.0378

(5.12) (4.60) (5.40) (6.20) (4.79) (4.83)

Medium 0.0528 0.0484 0.0501 0.0505 0.0438 Downgrade 0.0509

(6.48) (5.74) (6.33) (5.90) (4.12) (2.44)

High 0.0422 0.0585 0.0507 0.0452 0.0143 No rating 0.0546

(4.91) (5.77) (5.48) (4.74) (1.12) (7.32)

High - Low -0.0122 0.0189 0.0072 -0.0109 -0.0428

(-0.94) (1.48) (0.67) (-0.86) (-2.50)

This table reports return means and t-statistics from sequential double sorts on straddles. Every third Friday, we sort straddles 

into 3 portfolios based on a conditioning variable shown in the column header and then, within each tercile, sort straddles into 

3 portfolios based on past average returns over some formation period. Within each tercile of the conditioning variable, we 

then compute equal-weighted portfolio returns and take long and short positions in the top and bottom terciles. Numbers 

reported are the resulting high-minus-low return spreads within each tercile of the conditioning variable. T-statistics, in 

parentheses, are computed using Newey-West standard errors with three lags. We consider five conditioning variables.  The 

first, firm size, is the stock’s most recent equity capitalization.  Stock illiquidity is proxied by the average Amihud (2002) 

measure over the most recent 12 months.  Option illiquidity is the weighted average of the percentage bid-ask spread of the 

options in each straddle, averaged over the past 12 months.  Analyst coverage is the number of analysts covering the stock, 

updated monthly.  Credit rating is measured following Avramov et al. (2007) and is updated monthly.  "No downgrade" reports 

the high-minus-low return spread for the sample of stocks that have a credit rating but were not downgraded in the 12 months 

prior to the holding period. "Downgrade" reports the high-minus-low return spread for the sample of stocks that have a credit 

rating and were downgraded in that period. "No rating" reports the high-low return spread for the sample of stocks without a 

credit rating.

Panel B: Formation period includes lags 2 to 12

Panel A: Formation period includes lag 1 only



Table 13

After-cost performance of liquidity-taking strategies

Margin-

adjusted

Option bid-ask spread: None Algo Adjusted Effective Quoted None Algo Adjusted Effective Quoted

Main sample 0.0409 0.0107 -0.0359 -0.0722 -0.1090 0.0094 -0.0208 -0.0674 -0.1037 -0.1406 0.0185

(6.18) (1.61) (-5.26) (-10.21) (-14.72) (1.23) (-2.73) (-8.76) (-13.21) (-17.36) (4.72)

Main sample with deciles 0.0496 0.0196 -0.0266 -0.0627 -0.0993 0.0195 -0.0105 -0.0567 -0.0928 -0.1295 0.0233

(5.61) (2.21) (-2.95) (-6.80) (-10.45) (2.14) (-1.15) (-6.17) (-9.94) (-13.52) (4.57)

Low-cost with deciles 0.0806 0.0682 0.0493 0.0346 0.0199 0.0614 0.0490 0.0301 0.0153 0.0006 0.0396

(6.63) (5.62) (4.07) (2.85) (1.64) (5.11) (4.08) (2.49) (1.27) (0.05) (5.75)

Main sample 0.0622 0.0362 -0.0040 -0.0356 -0.0678 0.0374 0.0114 -0.0290 -0.0607 -0.0930 0.0294

(7.97) (4.81) (-0.56) (-5.04) (-9.63) (4.52) (1.41) (-3.68) (-7.77) (-11.85) (7.85)

Main sample with deciles 0.0729 0.0465 0.0056 -0.0265 -0.0592 0.0482 0.0218 -0.0192 -0.0515 -0.0844 0.0345

(7.10) (4.65) (0.58) (-2.78) (-6.28) (4.65) (2.14) (-1.94) (-5.25) (-8.63) (7.38)

Low-cost with deciles 0.0723 0.0599 0.0408 0.0260 0.0112 0.0551 0.0427 0.0236 0.0088 -0.0061 0.0347

(4.84) (4.02) (2.74) (1.75) (0.75) (3.66) (2.84) (1.57) (0.58) (-0.40) (4.44)

Main sample 0.0591 0.0271 -0.0222 -0.0606 -0.0995 0.0268 -0.0051 -0.0543 -0.0928 -0.1317 0.0277

(9.92) (4.60) (-3.74) (-9.90) (-15.46) (3.61) (-0.71) (-7.60) (-12.92) (-17.96) (8.32)

Main sample with deciles 0.0641 0.0316 -0.0186 -0.0578 -0.0977 0.0326 0.0001 -0.0500 -0.0894 -0.1293 0.0302

(8.23) (4.09) (-2.39) (-7.27) (-11.85) (3.68) (0.02) (-5.82) (-10.35) (-14.74) (7.33)

Low-cost with deciles 0.0815 0.0690 0.0498 0.0348 0.0198 0.0589 0.0463 0.0270 0.0120 -0.0030 0.0391

(6.10) (5.16) (3.71) (2.59) (1.47) (4.30) (3.37) (1.96) (0.87) (-0.21) (5.33)

Panel C: Composite

This table reports after-cost average returns on reversal and momentum strategies.  It also examines a composite strategy based on a combination of those strategies' 

rankings.  We report results for the baseline strategies and for strategies that optimize for transactions costs by using extreme deciles rather than quintiles and by using 

only options with percentage bid-ask spreads below 10%.  We report results under a variety of assumptions about the size of transactions costs, ranging from zero to 

the full quoted half-spread.  Intermediate cases include the algo, adjusted, and effective spreads, which are 20.3%, 51.6%, and 75.8%, respectively, as large as the 

quoted spreads (following Muravyev and Pearson 2020).  We include results with and without a cost for liquidating the stock position acquired by exercising in-the-

money options, where the cost is assumed to be one half of the closing bid-ask spread on the underlying stock.  The last column of the table reports the average return 

after adjustment for the required margin.  These values do not account for transactions costs.

Zero exercise costs Nonzero exercise costs

Panel A: Reversal

Panel B: Momentum
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In Section 5.3 of our paper, we considered the possibility, raised by Grundy and Martin
(2001), that momentum portfolio returns exhibited time-varying factor loadings. We ex-
amined a model that included market return, volatility, and jump factors. Our proxies for
these were, respectively, return on the S&P 500 Index, the return on the one-month at-the-
money S&P 500 Index straddle, and the return on the one-month S&P 500 put option with
Black-Scholes delta closest to -0.25. We found that factor loadings varied slightly, but that
accounting for this variation had virtually no effect on the profitability of the momentum
strategy.

In this appendix we analyze whether this conclusion is robust to other proxies of volatility
and jump risk. One alternative formulation follows Cremers et al. (2015), who use S&P 500
Index straddles of different maturities to construct a portfolio with nonzero vega but zero
gamma, which is interpreted as a pure volatility factor, and another portfolio with zero
vega but nonzero gamma, which is interpreted as a jump factor. The other formulation we
consider uses the CBOE’s VIX and SKEW indexes to construct volatility and jump factors.

To construct the Cremers et al. (2015) volatility and jump factors, we begin by selecting
the one-month and two-month straddles on the SPX index that are closest to at-the-money
(call delta = 0.5). We compute the vega and gamma of each straddle by taking the weighted
averages of the vegas and gammas of the component puts and calls. To construct a portfolio
of these two straddles that is sensitive to volatility risk but not jump risk, we find the
combination that has a positive vega, a zero gamma, and portfolio weights that sum to one.
The volatility factor is the 1-month return on this portfolio. The jump factor is constructed
similarly, except that it has a zero vega and positive gamma.

The final set of factors are constructed using the VIX and SKEW indexes from the
CBOE. The volatility factor is equal to ratio of a realized variance measure and an implied
variance, minus one. The realized variance is the squared excess S&P 500 Index return over
the period from one expiration Friday to the next.1 The implied variance is the square of the
VIX index at the start of the month divided by N/365, where N is the number of calendar
days between expiration Fridays.

The skewness factor is based on the CBOE’s SKEW index, whose relation with risk
neutral skewness S is given by

SKEW = 100− 10S.

To construct a “realized SKEW,” note that the risk-neutral skewness can be written as

S =
EQ

[
(R− rf )3

]
(N/365)1.5 VIX3 .

1More commonly, the realized variance is computed as the sum of squared daily excess returns. Under
the risk-neutral measure, the expected sum of squared daily returns and the expected squared monthly
excess return are identical, because return autocorrelation under risk neutrality is always zero. We base
our realized variance measure based on monthly returns rather than daily returns both because it results in
higher R-squares and because the skewness factor we construct can only be computed from monthly returns.
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The skewness factor is based on the realization of the numerator of S. The factor is

100− 10 RealizedS

SKEW
− 1,

where

RealizedS =
(R− rf )3

(N/365)1.5 VIX3 .

Tables A1 and A2 report regression results that are analogous to those in Table 10 but use
these alternative factor models. The results are easy to summarize. Aside from intercepts,
we find no significant coefficients in any regression, suggesting that the momentum portfolio
exhibits little to no dependence on market, volatility, jump, or skewness factors, either
unconditionally or conditional on the sign of past returns.

It is important to emphasize that the long and short legs of the momentum strategy
individually do exhibit significant factor risk exposures, with regression R-squares that are
generally above 30%. In particular, option returns have a strongly positive and highly
significant relationship with the volatility factor, and jump risk is also significant in some
cases. The momentum portfolio’s lack of any significant loadings on these factors is simply
a reflection of the very similar factor loadings of the long and short legs of the strategy.

References

Cremers, Martijn, Michael Halling, and David Weinbaum (2015), “Aggregate jump and
volatility risk in the cross-section of stock returns.” Journal of Finance, 70, 577–614.

Grundy, Bruce D. and J. Spencer Martin (2001), “Understanding the nature of the risks
and the source of the rewards to momentum investing.” Review of Financial Studies, 14,
29–78.
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Table A1

Time-varying factor exposures using the Cremers, Halling, and Weinbaum (2015) factors

(1) (2) (3) (4) (5) (6) (7)

a 0.0646 0.0615 0.0630 0.0635 0.0658 0.0627 0.0650

(8.08) (7.68) (7.98) (7.81) (8.12) (7.59) (7.65)

b down 0.2205 0.2141 0.2659 0.2713

(0.49) (0.48) (0.61) (0.63)

b flat -0.4511 -0.5044 -0.4574 -0.4971

(-1.57) (-1.77) (-1.53) (-1.66)

b up 0.0359 0.0473 0.0765 0.0912

(0.06) (0.08) (0.12) (0.14)

s down -0.0241 -0.0408 -0.0144 -0.0292

(-0.45) (-0.73) (-0.23) (-0.44)

s flat 0.0112 0.0040 0.0190 0.0138

(0.30) (0.12) (0.51) (0.41)

s up -0.0220 -0.0539 -0.0246 -0.0560

(-0.34) (-0.79) (-0.38) (-0.80)

e down -0.0067 -0.0115 -0.0053 -0.0128

(-0.20) (-0.32) (-0.15) (-0.35)

e flat 0.0143 0.0205 0.0175 0.0219

(0.53) (0.75) (0.62) (0.76)

e up 0.0452 0.0430 0.0475 0.0447

(0.73) (0.68) (0.75) (0.69)

R 2
0.0148 0.0013 0.0030 0.0181 0.0190 0.0047 0.0223

b up  - b down -0.1846 -0.1668 -0.1895 -0.1800

(-0.25) (-0.22) (-0.25) (-0.23)

s up  - s down 0.0021 -0.0131 -0.0102 -0.0268

(0.03) (-0.15) (-0.11) (-0.27)

e up  - e down 0.0519 0.0545 0.0527 0.0575

(0.73) (0.74) (0.73) (0.77)

Average hedged 0.0575 0.0596 0.0581 0.0589 0.0582 0.0580 0.0580

returns (6.52) (6.77) (6.61) (6.65) (6.57) (6.60) (6.60)

This table examines the effects of time-varying betas on momentum strategy returns.  Panel A reports 

estimates of full and restricted versions of the regression

The three risk factors represent the excess returns on the S&P 500 Index, a delta-neutral portfolio 

constructed to have positive vega and zero gamma, and another delta-neutral portfolio constructed to 

have positive gamma and zero vega.  The dummy variables indicate whether the referenced factor had 

a low, medium, or high realization during the formation period.  The table reports coefficient estimates 

and t-statistics (in parentheses, using Newey-West with three lags), R-squares, differences between 

coefficients, and average hedged momentum returns, where hedge ratios are time-varying and 

estimated using a rolling window of the most recent 60 months (with a minimum of 36 months).  For 

comparison, unhedged returns have a mean of .0603 and a t-statistic of 6.87.
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Table A2

Time-varying factor exposures using factors based on the VIX and SKEW indices

(1) (2) (3) (4) (5) (6) (7)

a 0.0646 0.0651 0.0677 0.0668 0.0613 0.0721 0.0655

(8.08) (7.29) (6.10) (7.19) (5.31) (5.67) (4.89)

b down 0.2205 0.2253 0.2467 0.1318

(0.49) (0.48) (0.53) (0.32)

b flat -0.4511 -0.3795 -0.5365 -0.4131

(-1.57) (-1.34) (-1.55) (-1.27)

b up 0.0359 0.0817 -0.0038 0.0565

(0.06) (0.13) (-0.01) (0.09)

s down 0.0114 0.0067 0.0047 0.0092

(1.18) (0.68) (0.32) (0.67)

s flat -0.0014 -0.0018 -0.0006 0.0031

(-0.17) (-0.19) (-0.04) (0.22)

s up 0.0417 0.0374 0.0490 0.0427

(1.57) (1.34) (1.64) (1.49)

e down 0.0591 0.0052 0.0660 0.0140

(1.05) (0.09) (0.97) (0.21)

e flat 0.0346 -0.0313 0.0394 -0.0264

(0.60) (-0.46) (0.53) (-0.31)

e up -0.0083 0.0063 -0.0344 -0.0355

(-0.17) (0.14) (-0.42) (-0.49)

R 2
0.0148 0.0165 0.0036 0.0274 0.0160 0.0230 0.0289

b up  - b down -0.1846 -0.1436 -0.2505 -0.0753

(-0.25) (-0.18) (-0.33) (-0.10)

s up  - s down 0.0303 0.0307 0.0443 0.0335

(1.08) (1.05) (1.35) (1.08)

e up  - e down -0.0674 0.0011 -0.1004 -0.0495

(-0.92) (0.02) (-1.15) (-0.64)

Average hedged 0.0610 0.0615 0.0709 0.0617 0.0649 0.0675 0.0601

returns (6.98) (7.02) (7.34) (7.11) (7.21) (6.73) (6.47)

This table examines the effects of time-varying betas on momentum strategy returns.  Panel A reports 

estimates of full and restricted versions of the regression

The three risk factors represent the excess returns on the S&P 500 Index, the return on a squared 

return claim (vix), and the return on a cubed return claim (skew).  The dummy variables indicate 

whether the referenced factor had a low, medium, or high realization during the formation period. The 

table reports coefficient estimates and t-statistics (in parentheses, using Newey-West with three lags), R-

squares, differences between coefficients, and average hedged momentum returns, where hedge ratios 

are time-varying and estimated using a rolling window of the most recent 60 months (with a minimum 

of 36 months).  For comparison, unhedged returns have a mean of .0603 and a t-statistic of 6.87.
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