
Submitted to Operations Research
manuscript OPRE-2013-06-297.R2

Authors are encouraged to submit new papers to INFORMS journals by means of
a style file template, which includes the journal title. However, use of a template
does not certify that the paper has been accepted for publication in the named jour-
nal. INFORMS journal templates are for the exclusive purpose of submitting to an
INFORMS journal and should not be used to distribute the papers in print or online
or to submit the papers to another publication.

Fully Sequential Procedures for Large-Scale
Ranking-and-Selection Problems in Parallel

Computing Environments

Jun Luo
Antai College of Economics and Management, Shanghai Jiao Tong University, Shanghai, China, 200052

jluo ms@sjtu.edu.cn

L. Jeff Hong
Department of Economics and Finance and Department of Management Sciences, College of Business,

City University of Hong Kong, Kowloon, Hong Kong, jeffhong@cityu.edu.hk

Barry L. Nelson
Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, Illinois, 60208

nelsonb@northwestern.edu

Yang Wu
Department of Industrial Engineering and Logistics Management, Hong Kong University of Science and Technology,

Clear Water Bay, Hong Kong, wuyangnju@gmail.com

Fully sequential ranking-and-selection (R&S) procedures to find the best from a finite set of simulated

alternatives are often designed to be implemented on a single processor. However, parallel computing envi-

ronments, such as multi-core personal computers and many-core servers, are becoming ubiquitous and easily

accessible for ordinary users. In this paper, we propose two types of fully sequential procedures that can

be used in parallel computing environments. We call them vector-filling procedures and asymptotic parallel

selection procedures, respectively. Extensive numerical experiments show that the proposed procedures can

take advantage of multiple parallel processors and solve large-scale R&S problems.

Key words : fully sequential procedures, parallel computing, statistical issues, asymptotic validity

History : Received June 2013; revision received March 2014; accepted June 2015.

1. Introduction

Selecting the alternative with the largest or smallest mean performance from a finite number of

alternatives is a common problem in many areas of operations research and management science.

For instance, in designing a multi-stage manufacturing line one may need to determine the best

allocation of the buffer space to maximize the average throughput; in controlling an inventory sys-

1

Luo, Hong, Nelson and Wu: Sequential R&S Procedures using Parallel Computing
2 Article submitted to Operations Research; manuscript no. OPRE-2013-06-297.R2

tem one may need to identify the best reorder point to minimize the average cost; and in managing

an ambulance service one may need to select the optimal vehicle dispatching policy to minimize

the average response time. In all of these examples the mean performances of the alternatives may

be evaluated by running simulation experiments. This type of optimization problem is known as a

ranking-and-selection (R&S) problem in the simulation literature.

Many R&S procedures have been developed (see, for instance, Kim and Nelson (2006b) for an

introduction to the topic). These procedures typically allocate the simulation effort to all alter-

natives such that the best can be selected with certain statistical guarantees, e.g., a pre-specified

probability of correct selection (PCS). However, these procedures are often designed to handle a

relatively small number of alternatives. As pointed out by Kim and Nelson (2006b), the two-stage

procedure of Rinott (1978), hereinafter called Rinott’s procedure, is typically applied to fewer than

20 alternatives, and the fully sequential procedure of Kim and Nelson (2001), hereinafter called

KN , is considered useful for fewer than 500 alternatives. The NSGS procedure of Nelson et al.

(2001) is designed specifically to solve large-scale R&S problems. However, the largest test problem

reported in their paper has only 500 alternatives.

In practice, however, there are many R&S problems that have thousands to tens of thousands

of alternatives. Traditionally, these problems are solved using optimization-via-simulation (OvS)

algorithms (see, for instance, Hong and Nelson (2009) for a recent review of OvS). Many of the OvS

algorithms for this type of problem guarantee global convergence, i.e., they guarantee selecting the

best alternative as the simulation effort goes to infinity. To achieve global convergence, however,

these algorithms evaluate all alternatives as the simulation effort goes to infinity, and therefore

become essentially R&S procedures. When they stop short of infinity, as they always do, there

is often no statistical guarantee on the quality of the selected solution and the solution may be

significantly inferior to the optimal one. The goal of this paper is to provide R&S procedures, where

the objective is to select the system with the largest mean response, that are valid and effective in

parallel computing environments.

In the past few years there has been rapid adoption of parallel computing. Multiple-core proces-

sors are ubiquitous today; they are used not only in servers and personal computers, but also in

tablet computers and smart phones. Moreover, large quantities of computing (e.g., parallel proces-

sors) delivered as a service through the Internet, often called cloud computing, is becoming readily

available and affordable to ordinary users. This motivates us to consider how to solve large-scale

R&S problems in parallel computing environments. In particular, we are interested in whether

current R&S procedures are statistically valid and efficient in parallel computing environments,

and if they are not, how to design new procedures that are.

Luo, Hong, Nelson and Wu: Sequential R&S Procedures using Parallel Computing
Article submitted to Operations Research; manuscript no. OPRE-2013-06-297.R2 3

R&S problems can fit easily into parallel computing environments. If most of the computing

time is used to generate independent simulation observations from various alternatives, then this

can be done by executing the simulation programs in a parallel scheme without requiring any

synchronization among different processors. This level of parallelization is called “embarrassingly

parallel” (see, for instance, Foster (1995)) and it makes parallel computing very attractive to solve

R&S problems. This advantage of using parallel simulation technology for R&S problems has also

been discussed by Chen (2005) and Yücesan et al. (2001).

The total computing effort required to solve a R&S problem typically increases only moderately

as the problem size increases. Taking Rinott’s procedure (which samples from each alternative in

two stages and only compares results after all sampling is completed) as an example, we plot the

expected total number of samples as a function of the number of alternatives k in the solid line

in Figure 1 (see Rinott (1978) for the procedure and Nelson et al. (2001) for a similar figure). To

make this result more intuitive, suppose that we have 100 parallel processors and each processor

can handle a R&S problem with 500 alternatives on its own, as a single processor in the allowable

amount of time using Rinott’s procedure. Then, in the same amount of time, Rinott’s procedure

on all processors can handle a similar problem with at least 30,000 alternatives, which significantly

enlarges the size of R&S problems that may be solvable. In Figure 1, we also plot the maximum

(or worst-case) and the average expected total numbers of samples for the KN procedure (see Kim

and Nelson (2001) for the details). Notice that, when the number of alternatives increases, the

proportion of clearly inferior alternatives often increases much faster than that of good alternatives.

Therefore, fully sequential procedures, e.g., KN , that allow early elimination often require a much

smaller expected sample size than the worst case, which makes fully sequential procedures more

attractive for large-scale R&S problems than two-stage procedures such as Rinott’s.

From an implementation point of view, two-stage procedures are easier to parallelize than sequen-

tial procedures. For instance, a naive approach to implementing Rinott’s procedure is as follows:

In the first stage, we distribute kn0 replications equally among all processors and compute the

first-stage sample variances and second-stage sample sizes of all alternatives after all processors

finish their jobs. In the second stage, we again distribute all additional samples equally among

all processors and select the alternative with best sample mean after all processors finish their

jobs. Notice that the total time required to complete the procedure is determined by the processor

that finishes its job last. When replication times of different alternatives are different or they are

random, the total time of this approach may be quite long and cause many processors to be idle.

To improve efficiency, one may estimate the replication time for each alternative after the first

stage, formulate the sample allocation problem in the second stage as a stochastic parallel machine

Luo, Hong, Nelson and Wu: Sequential R&S Procedures using Parallel Computing
4 Article submitted to Operations Research; manuscript no. OPRE-2013-06-297.R2

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2
x 10

7

number of alternatives

ex
pe

ct
ed

 to
ta

l s
am

pl
e

si
ze

KN maximum
Rinott
KN average

Figure 1 The expected total number of observations v.s. the number of alternatives for both Rinott and KN

when the initial sample size n0 = 16, variances across all alternatives σ2
i = 1, and the indifference-zone

parameter δ= σi/
√
n0 in the slippage configuration where the difference between the means of the best

and all other alternatives equals to δ.

scheduling problem and minimize its makespan (i.e., total time to completion). Interested readers

may refer to Chapter 12 of Pinedo (2008) for more background on scheduling.

If the number of alternatives is less than or equal to the number of processors, it makes sense to

use multi-stage procedures, such as Rinott’s procedure, to reduce communication among processors.

If the number of alternatives is much larger than the number of processors, however, it makes more

sense to use fully sequential procedures with eliminations, such as KN , to save simulation effort

by eliminating inferior alternatives early. Since large-scale R&S problems typically have a number

of alternatives that is a few orders-of-magnitude larger than the number of available processors, in

this paper we focus on designing fully sequential procedures to solve such problems.

There are many different configurations of parallel computing environments, ranging from multi-

core personal computers to many-core servers to local computer farms to clouds on the Internet.

We focus mainly on designing statistically valid fully sequential procedures for multi-core personal

computers and many-core servers. Then, without communications via the Internet, the time for

loading simulation programs to different processors and transmitting data among processors is

almost negligible. When implementing these procedures in clouds on the Internet, however, there

may be packet delays or even losses, which may affect the validity of the procedures. Therefore,

we leave the design of fully sequential procedures for cloud implementations as a topic for future

research.

When designing fully sequential procedures for a parallel computing environment, a critical

question is “what makes fully sequential procedures on multiple processors different from their

Luo, Hong, Nelson and Wu: Sequential R&S Procedures using Parallel Computing
Article submitted to Operations Research; manuscript no. OPRE-2013-06-297.R2 5

counterparts on a single processor?” A succinct answer to this question is that “the input and output

sequences of observations are different on multiple processors, while they are same on a single

processor.” A single processor system works like a single-server queue, the departure (i.e., output)

sequence is same as the arrival (i.e., input) sequence; while a multiple processor system works like a

multiple-server queue, the departure sequence is in general different from the arrival sequence when

the service time (i.e., replication time of an observation in our situation) is random. In a simulation

study we may control the input sequence deterministically. For instance, in KN we simulate all

alternatives one-at-a-time according to a predetermined order. Therefore, the output sequence of

a single processor system is also the same deterministic sequence. However, the same deterministic

input sequence on a multiple-processor system may result in a random output sequence.

The randomness in the output sequence creates implementation issues as well as statistical

issues when designing fully sequential R&S procedures. From an implementation point of view,

randomness in the output sequence makes sample size synchronization difficult. For instance, when

alternative 1 has 30 observations, alternative 2 may have 40 while alternative 3 may have only

20. Thus, procedures that require perfect synchronization of sample sizes from all alternatives are

either difficult to implement or inefficient (i.e., using only a portion of the observations, such as

setting the sample size to 20 in our three-alternative example). However, implementation issues

may be easy to handle as there exist fully sequential procedures that allow unequal sample sizes

from different alternatives (e.g., Hong (2006)). The statistical issues caused by randomness in

output sequence are more critical. First, when the performance of an alternative is correlated with

its replication time, observations with shorter replication time tend to be available earlier and the

sequence of output observations may not be independent even though they use independent random

numbers. This problem also exists when simulating a single alternative using multiple processors;

see Heidelberger (1988). Second, even when the performance of the alternatives are independent

of their replication times (even when the replication times are constant), sample sizes of surviving

alternatives depend on elimination decisions which in turn depend on sample-mean information of

the alternatives. This type of dependence destroys the independence between sample means and

sample sizes that are exploited in R&S procedures using a famous result from Stein (1945). More

details on the statistical issues caused by random output sequences are discussed in Section 2.

In this paper we propose two solutions to deal with these issues. If one insists on making existing

fully sequential R&S procedures suitable for parallel simulation schemes, implying that we may

only perform comparisons based on the input sequence of samples, then we suggest creating a

vector to record the observations exactly in the order of the input sequence and make comparisons

based on a pre-determined comparison rule. For instance, to implement KN , one may perform

a comparison after all surviving alternatives have their first r observations available for any r =

Luo, Hong, Nelson and Wu: Sequential R&S Procedures using Parallel Computing
6 Article submitted to Operations Research; manuscript no. OPRE-2013-06-297.R2

n0, n0 + 1, Therefore, the procedure will have the same statistical validity as KN . We call

this type of procedure vector-filling (VF) as it fills the vector of observations based on the input

sequence. Although the VF procedures have finite-sample statistical validity, they may not use all

available observations at the time of comparison and may also add complexity in implementation

as one needs to track the input order. Another issue with the VF procedures is that they may

consume a large amount of memory to store the vector for R&S problems having a large number

of alternatives. Even though the problem can be partly relieved by using a more effective memory

management scheme, we may still encounter out-of-memory errors in some implementations. If

one is content with asymptotic validity, we also design an asymptotic parallel selection (APS)

procedure that allows unequal sample sizes for all alternatives and makes elimination decisions

based on all available observations. The APS procedure can be shown to be asymptotically valid as

the indifference-zone parameter goes to zero, an asymptotic regime also used by Kim and Nelson

(2006b).

Our work is related to three streams of simulation literature. The first is the literature on R&S.

In this paper we take a frequentist’s view and consider the indifference-zone (IZ) formulation of

the problem. The IZ formulation was first proposed by Bechhofer (1954) and related procedures

are summarized in Bechhofer et al. (1995) and Kim and Nelson (2006b). There are also many

Bayesian formulations and procedures for R&S problems. For instance, Chen et al. (2000) and

Chick and Inoue (2001a,b) allocate a finite number of samples to different alternatives to maximize

the posterior probability of correct selection. Instead of considering only the statistical measure of

probability of correct selection, Chick and Gans (2009) and Chick and Frazier (2012) take sampling

cost into account and formulate the R&S problems using dynamic programming techniques. A

comprehensive comparison of the performance among different R&S procedures (designed under

either a frequentist or a Bayesian formulation) has been conducted by Branke et al. (2007) in which

they conclude that no R&S procedure can dominate in all situations.

The second stream of literature is on parallel and distributed simulation (PADS). According

to Heidelberger (1988), PADS has two different approaches to parallelizing the simulation exper-

iments: the first one is that each processor simulates multiple independent replications and the

other one is that multiple processors cooperate on a single realization or replication. There is a

vast literature on PADS from the 1980s and 1990s, where the focus was on the synchronization

issues related to correct ordering of events in discrete-event simulations (see, for instance, Misra

(1986) and Fujimoto (1990)). Recently, cloud computing has also been applied to handle PADS

(Fujimoto et al. (2010)).

The third stream of literature is on simulation output analysis in a parallel and distributed

simulation environment. Heidelberger (1988) discusses a variety of statistical properties for sample

Luo, Hong, Nelson and Wu: Sequential R&S Procedures using Parallel Computing
Article submitted to Operations Research; manuscript no. OPRE-2013-06-297.R2 7

mean estimators calculated by observations from terminating simulations in a parallel simulation

environment under three different stopping rules. Glynn and Heidelberger (1991) further study

mean performance estimators for both terminating simulations and steady-state regenerative sim-

ulations under a completion-time constraint. Recently, Hsieh and Glynn (2009) proposed two new

estimators for steady state simulations by weighting the sample average across replications on

multiple processors according to some model selection criterion. To the best of our knowledge,

there are only three papers using parallel and distributed simulation to solve R&S problems. The

first is by Yücesan et al. (2001), who implement an optimal computing budget allocation (OCBA)

algorithm in a web-based parallel environment to select the best alternative based on a Bayesian

approach. The second is by Chen (2005), who applied a multi-stage R&S procedure with the sim-

ulation tasks of each stage distributed to multiple processors. Both papers test their procedures

using only small-scale problems (both with only 10 alternatives), so it is not clear whether their

procedures are capable of handling large-scale R&S problems. The third is by Ni et al. (2013), who

proposed a “zipping” method to solve large-scale R&S problems in a high performance computing

environment. The basic idea of their “zipping” method is to retrieve the independent and identi-

cally distributed (i.i.d.) sequence by controlling the seeds of the random number generator for each

alternative, which is similar to the idea of our VF procedures.

As one of the pioneering works in handling R&S problems in parallel computing environments,

we would like to highlight three main contributions of this paper. First, we demonstrate that large-

scale R&S problems can be solved efficiently in parallel computing environments. Therefore, using

parallel computing environments is a viable solution when there are a large number of alternatives.

Second, we show that naive implementations of existing sequential R&S procedures in parallel

computing environments may cause unexpected statistical issues that make these procedures inef-

ficient or even invalid. To circumvent these issues, we propose the VF procedures that preserve

the original statistical guarantees by carefully managing the output sequence of the simulation

replications. Third, we propose the APS procedure that does not require active managing of the

output sequence but is asymptotically valid. The APS procedure is simple to implement and the

numerical study shows that it works well for the test problems.

The remainder of this paper is organized as follows: In Section 2, we use a queueing analogy to

illustrate differences between using a single processor and using multiple processors to solve R&S

problems. Based on the properties we identify in Section 2, we then propose two general approaches

to designing R&S procedures, namely the VF procedures and the APS procedures, in Sections 3

and 4. In Section 4, we also show the statistical validity of the APS procedure in a meaningful

asymptotic regime. Numerical implementation of these two procedures as well as the numerical

results are shown in Section 5, followed by some concluding remarks in Section 6.

Luo, Hong, Nelson and Wu: Sequential R&S Procedures using Parallel Computing
8 Article submitted to Operations Research; manuscript no. OPRE-2013-06-297.R2

2. The Randomness of Output Sequence

Suppose there are k alternatives whose mean performance can be evaluated by simulation on

m processors. Let Xi` denote the `th observation from alternative i, and we assume that Xi`,

`= 1,2, . . ., are i.i.d. random variables with a finite mean µi for all i= 1,2, . . . , k; and that Xi` and

Xjd are mutually independent for all `, d and i 6= j. Under the IZ formulation, we further assume

that µ1− δ ≥ µ2 ≥ . . .≥ µk, where δ is the IZ parameter, and our goal is to design fully sequential

procedures that are statistically valid, can select alternative 1 as the best with a probability at

least 1− α and that can be implemented on multi-core personal computers or many-core servers

(with a total of m> 1 processors). For mathematical simplification, in this paper we assume that

the m processors are identical in their processing speeds, and that the time for loading simulation

programs into processors and the time for transmitting data among the processors is negligible.

2.1. Queueing Analogy

To better understand the difference between implementation of fully sequential procedures on a

single processor (i.e., m= 1) and on multiple processors (i.e., m> 1), we describe the simulation

process using a queueing model analogy. In this analogy, observations from alternative i are rep-

resented by class i customers, and m identical processors are represented by a server pool with m

homogeneous servers. There is no arrival process in this queueing model, instead, all customers are

waiting in the queue with a predetermined order at the beginning of the simulation process, and

this predetermined order of customers is called the input sequence. When the simulation starts,

the first m customers are assigned to the m servers. Once a server finishes the service of its current

customer (i.e., generating the observation), the first customer waiting in queue will be immediately

routed to that server. The departure process captures the order of customers who have finished

service (i.e., the observations), and the order of departing customers is called the output sequence.

When implementing fully sequential selection procedures, we perform comparisons and elimina-

tions among the surviving alternatives based on the observations in the output sequence. When

an alternative i is to be eliminated, the class i customers in the input sequence will abandon the

queue and therefore will not be simulated.

For a fully sequential procedure implemented on a single processor, it is worthwhile noting that

its input and output sequences are always the same. However, when the procedure is implemented

on multiple processors, the output sequence may be different from the input sequence, because

the simulation times of different alternatives may be different, and the output sequence may even

be non-deterministic because the simulation times of alternatives may be stochastic. See Figure 2

for an illustration. Because the output sequence may be different from the input sequence, we

Luo, Hong, Nelson and Wu: Sequential R&S Procedures using Parallel Computing
Article submitted to Operations Research; manuscript no. OPRE-2013-06-297.R2 9

m= 1

12k12k 12k12k

Input sequence Server pool Output sequence

m> 1

12k12k 25213i

Figure 2 An illustration using queueing models.

define Yij as the jth observation of alternative i in the output sequence, in addition to Xi` which

represents the `th observation of alternative i in the input sequence. Notice that, when simulation

is conducted on a single processor, Xi` = Yi`. When simulation is conducted on multiple processors,

however, it is possible that Xi` 6= Yi`.

Let Γi` denote the (random) amount of time it takes to run Xi`, the `th replication of alternative

i in the input sequence. In the queueing analogy, Γi` is the service time of the `th customer of

class i in the queue. We assume that Γi` > 0 almost surely (a.s.) and it has a finite mean γi > 0.

Then, {(Xi`,Γi`), ` = 1,2, . . .} is a sequence of i.i.d. bivariate random vectors. However, as the

comparisons and elimination decisions for a sequential procedure are made based on the output

sequence {Yi`, `= 1,2, . . .}, it is critical to understand the statistical properties of {Yi`, `= 1,2, . . .}.

In the remainder of this section, we show that {Yi`, `= 1,2, . . .} may not be an i.i.d. sequence and

it may compromise the statistical validity of existing fully sequential selection procedures.

2.2. Random Sample Sizes

When implementing a fully sequential selection procedure, one needs to specify the input sequence,

which we call the sample allocation rule (SAR). SARs describe how observations from different

alternatives are repeated in the input sequence. The most straightforward SAR is the round-robin

rule that takes one observation from each surviving alternative in a predetermined order (say

alternatives 1,2, . . . , k); it is used in the KN procedures of Kim and Nelson (2001, 2006a). For

simplicity of presentation, we only consider the round-robin SAR in this paper.

Let t ≥ 0 denote the run time from the start of the procedure and Ni(t) denote the number

of completed observations of alternative i by time t for all i = 1,2, . . . , k. Then, {Ni(t), t ≥ 0}

are continuous-time stochastic processes for all i= 1,2, . . . , k and {Ni(t), t≥ 0} and {Nj(t), t≥ 0}

Luo, Hong, Nelson and Wu: Sequential R&S Procedures using Parallel Computing
10 Article submitted to Operations Research; manuscript no. OPRE-2013-06-297.R2

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

sample size of the phantom alternative

ra
tio

Alternative 1
Alternative 2
Alternative 3
Alternative 4

Figure 3 Ratio of the sample sizes of alternative i, i= 1,2,3,4, and phantom alternative p when the number of

processors is m= 8 and the number of alternatives is k= 4.

are typically dependent. To better understand {Ni(t), t ≥ 0} and its characteristics under single

processor and multiple processors, we create a new phantom alternative and call it alternative p.

In the input sequence, alternative p is queued at the end of each round-robin cycle. For instance,

when the alternatives are simulated in the order of alternative 1 to k, alternative p is queued right

after every alternative k. Furthermore, alternative p has a simulation time of 0 and its observations

are not compared to other alternatives. Therefore, it is clear that alternative p does not affect the

implementation of the procedure and this is why it is called a phantom alternative.

Let Np(t) denote the number of observations of the phantom alternative in the output sequence

by time t. Let tr = inf{t≥ 0 :Np(t) = r} for all r = 1,2, . . ., which is the time that the rth obser-

vation from the phantom alternative is obtained, and let Nir =Ni(tr) be the number of completed

observations of alternative i at time tr for all i = 1,2, . . . , k and r = 1,2, Then, we convert

the continuous-time process {Ni(t), t ≥ 0} into a discrete-time process {Nir, r = 1,2, . . .} for all

i= 1,2, . . . , k. Notice that, when KN is conducted on a single processor, tr, r= 1,2, . . . are the time

points at which the alternatives are compared and eliminated and Nir =Npr = r, i.e., Nir/Npr =

1 for all r = 1,2, . . . and for any surviving alternative i. Therefore, the discrete-time processes

{Nir, r= 1,2, . . .} are deterministic for all surviving alternatives, which makes the statistical validity

of KN easier to analyze.

When there are multiple processors, however, the discrete-time process {Nir, r = 1,2, . . .}

becomes a stochastic process and Nir is typically different from Njr when both alternatives i and j

are surviving, i.e., Nir/Npr 6=Njr/Npr. To illustrate this, we simulate 4 alternatives with 8 proces-

sors using a round-robin rule, where the time to generate an observation of alternatives i follows

Luo, Hong, Nelson and Wu: Sequential R&S Procedures using Parallel Computing
Article submitted to Operations Research; manuscript no. OPRE-2013-06-297.R2 11

an exponential distribution with mean i units of time, and we plot Nir/Npr for all i= 1,2,3,4 and

r= 1,2, . . . ,100 in Figure 3. From the figure, we see clearly that Nir/Npr are random and typically

different from 1, but they appear to converge to 1 as r increases.

2.3. Loss of I.I.D. Property

For each alternative i, even though {Xi`, `= 1,2, . . .} is an input sequence of i.i.d. random variables,

the output sequence {Yi`, `= 1,2, . . .} may no longer be i.i.d. when Xi` and Γi` are correlated. As

a result, the sample mean estimator Ȳi(n) = n−1
∑n

`=1 Yi` calculated using the first n observations

of alternative i in the output sequence, is often biased and is in general difficult to analyze.

We use a simple example from Heidelberger (1988) as an illustration. Suppose there is only one

alternative, alternative 1, to be simulated and X1` = Γ1` follows an exponential distribution with

mean µ1. Then Heidelberger (1988) shows that the first observation from the output sequence,

Y11, is the shortest of m i.i.d. exponential random variables, that is, Y11 = min{X11,X12, . . . ,X1m}

which is exponentially distributed with mean µ= µ1/m. In Appendix EC.1.1, we derive closed-form

expressions for Y1`, `= 1,2, Based on these closed-form expressions, we can easily verify that

Y1`, `= 1,2, . . ., are not i.i.d. The mean of Y1` is

E[Y1`] = µ1

[
1−

(
1− 1

m

)`]
,

and the expectation of the sample mean estimator is

E
[
Ȳ1(n)

]
= µ1

{
1− m− 1

n

[
1−

(
1− 1

m

)n]}
,

which means Ȳ1(n) has a downward bias. However, the bias goes to 0 as the sample size n→∞.

Furthermore, the moment generating function (MGF) of Y1i is

MY1`
(t) =

1

1−mµt
− mµt

1−mµt

(
m− 1

m
· 1

1−µt

)`
,

where t is in a sufficiently small neighborhood of 0. Notice that lim`→∞MY1`
(t) = 1/(1−mµt), which

is exactly the MGF of an exponential random variable with mean mµ= µ1 (seeing Appendix EC.1.1

for detailed derivations).

Furthermore, let MY1,`+n
(t) and MY1`+Y1,`+n

(t) denote the MGFs of Y1,`+n and Y1` + Y1,`+n,

respectively, for any `= 1,2, . . . and n= 1,2, . . . In Appendix EC.1.1, we also show that

lim
n→∞

{
MY1`

(t) ·MY1,`+n
(t)−MY1`+Y1,`+n

(t)
}

= 0.

Therefore, the dependence between Y1` and Y1,`+n also vanishes as n→∞. In this sense, as n→∞,

the output sequence may be viewed as i.i.d. and statistically equivalent to the input sequence.

Luo, Hong, Nelson and Wu: Sequential R&S Procedures using Parallel Computing
12 Article submitted to Operations Research; manuscript no. OPRE-2013-06-297.R2

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

sample size per each alternative

m
ea

n

Estimator with 1000 replications

µ

1

µ
2

µ
3

µ
4

Figure 4 The sample mean estimators with 1000 sample paths when the number of processors is m= 8 and the

number of alternatives is k= 4.

When there are multiple alternatives, however, the system dynamics are much more complicated,

and we are not able to derive closed-form expressions for the distribution of Yi`. Nevertheless, it is

still quite clear that Yi`, `= 1,2, . . . are no longer i.i.d. observations, and that {Yi`, `= 1,2, . . .} and

{Yj`, ` = 1,2, . . .} are likely dependent on each other. As an example, we simulate 4 alternatives

on 8 processors where Xi` = Γi` follows an exponential distribution with mean i time units. In

Figure 4, we plot E
[
Ȳi(n)

]
, i= 1,2,3,4, with the sample size n varying from 1 to 100, estimated

with from 1,000 macroreplications.

2.4. Dependence Caused by Eliminations

If Xi` is independent of Γi` (or even if Γi` is constant) for all i= 1,2, . . . , k, Ȳi(n) becomes an unbi-

ased estimator of µi. However, the elimination decisions inherent to sequential selection procedures

may still introduce dependence among the sample sizes of surviving alternatives, and thus intro-

duce dependence among their sample means. To illustrate this type of dependence, suppose there

are three alternatives to be simulated on two processors and the replication times of alternatives

1,2,3 are fixed as 2,1,1 time units, respectively. Furthermore, suppose that the input sequence is in

a round-robin order of 1, 2 and 3. Then the simulation process can be described as in Figure 5. At

each time point tr (which corresponds to the completion time of the rth phantom alternative), we

conduct comparisons among all surviving alternatives. Notice that, when all three alternatives are

surviving, they all have an equal sample size N1(tr) =N2(tr) =N3(tr) = r at tr for all r= 1,2,

Suppose at some time point tn, alternative 2 is eliminated. Then, at the next time point tn+1,

Luo, Hong, Nelson and Wu: Sequential R&S Procedures using Parallel Computing
Article submitted to Operations Research; manuscript no. OPRE-2013-06-297.R2 13

Alt. 1Processor 1 Alt. 1 Alt. 1 Alt. 1 Alt. 3

Alt. 2Processor 2 Alt. 3

t1

Alt. 2 Alt. 3

t2

Alt. 2 Alt. 3

tn

Alt. 3

tn+1

Alt. 1

tn+2

Figure 5 Three alternatives on two processors with constant replication times.

N1(tn+1) = n but N3(tn+1) = n + 1. Therefore, sample sizes of surviving alternatives depend on

elimination decisions which depend on sample means of all alternatives. This type of dependence

may cause the sample means of the surviving alternatives to be dependent on each other.

When there are a large number of alternatives with random replication times simulated on

many processors, the dynamics of elimination decisions can be more complicated, leading to more

complicated dependence among the sample sizes and sample means of surviving alternatives. It

is worthwhile noting that this problem is caused by the use of multiple processors. When a fully

sequential procedure is implemented on a single processor, eliminations do not cause dependence

because the output sequence of surviving alternatives remains the same as that without elimination.

In Sections 2.2–2.4, we have shown that the use of multiple processors may create various statisti-

cal issues when the observations in the output sequence are used to implement sequential selection

procedures. To solve the problem, we take two different approaches and discuss them in the next

two sections. In the first approach, we implement sequential procedures using the observations in

the output sequence based on their order in the input sequence. Therefore, the finite-time statis-

tical validity of these procedures may be guaranteed. However, this approach requires significant

accounting and often a large amount of memory for storing the observations, and it may use only a

portion of the observations in the output sequence (thus may not be efficient). Therefore, we pro-

pose another approach that designs sequential selection procedures that are asymptotically valid.

This is possible because, as shown in Sections 2.2–2.4, the statistical properties of the sample-mean

estimators Ȳi(n) tend to behave nicely as the sample sizes go to infinity.

3. Vector Filling Procedures

As mentioned above, if we restrict our attention to the use of observations exactly according to the

predetermined order in the input sequence, then all existing fully sequential selection procedures

are statistically valid when implemented in a parallel computing environment. To achieve this goal,

we may create a vector to record the observations in the same order of the input sequence and place

phantom alternative p in the positions where elimination decisions are scheduled. Then we can

conduct comparison and elimination decisions when all observations from surviving alternatives

Luo, Hong, Nelson and Wu: Sequential R&S Procedures using Parallel Computing
14 Article submitted to Operations Research; manuscript no. OPRE-2013-06-297.R2

ahead of every position for the phantom alternative have been collected in the vector. We call

this type of procedures a vector-filling procedure. In this section, we provide a simple vector-filling

procedure which extends the well-known KN to a parallel computing environment.

To simplify the presentation, we suppose there are m+ 1 parallel processors (or threads), which

we call processors 0,1, . . . ,m. Processor 0 is used to manage the input sequence and to conduct

comparisons and eliminations, while processors 1,2, . . . ,m are used to simulate the alternatives.

Procedure 1 (Vector-Filling KN Procedure)

Step 0. Setup: Select confidence level 1/k < 1−α< 1, IZ parameter δ > 0, and first-stage sample

size n0 ≥ 2. Let h2 = (n0− 1)

[(
2α
k−1

)−2/(n0−1)

− 1

]
.

Step 1. Initialization: Let I = {1,2, . . . , k} be the set of alternatives still in contention. Processor

0 manages the input sequence in which all alternatives are stored in a round-robin order from 1

to k. Processor 0 also performs the tasks listed in the following Steps 2–4, including conducting

pairwise comparisons and eliminations. The first m replications in the input sequence are assigned

to the remaining m processors, processors 1,2, . . . ,m, to be simulated. Processors 1,2, . . . ,m work

as follows: take the first alternative queued in the input sequence, generate an observation, and

submit the result to processor 0.

The `th replication from alternative i in the input sequence is denoted as Xi`. These available

observations are stored in a vector in the same order as the input sequence. Let na = max{n≥ 0 :

Xi` is available for all `≤ n and for i∈ I}. Notice that na = 0 at the beginning of simulation. Start

the simulation.

Step 2. Variance Estimation: When na ≥ n0, compute the sample variance of the difference

between alternatives i 6= j,

S2
ij =

1

n0− 1

n0∑
`=1

(
Xi`−Xj`− [X̄i(n0)− X̄j(n0)]

)2
,

where X̄`(n0) is the first-stage sample mean of alternative ` with n0 observations. Set r= n0.

Step 3. Elimination: Set Iold = I. Let

I = Iold \
{
i∈ Iold : X̄i(r)− X̄j(r)<min

{
0,−

h2S2
ij

2rδ
+
δ

2

}
for some j ∈ Iold, j 6= i

}
,

where A \ B = {x : x ∈ A and x /∈ B}, and remove alternative i from the input sequence for all

i∈ Iold \ I.

Step 4. Stopping Rule: If |I|= 1, then stop all processors and select the alternative whose index

is in I as the best. Otherwise, processor 0 checks whether it is ready for the next elimination. Let

r= r+ 1.

Luo, Hong, Nelson and Wu: Sequential R&S Procedures using Parallel Computing
Article submitted to Operations Research; manuscript no. OPRE-2013-06-297.R2 15

(a). If r≤ na, go to Step 3;

(b). Otherwise, wait for a new observation from any alternative j in I, say Xj`, record Xj` in

the vector, update na, and go to (a).

Remark 1. The statistical validity of the vector-filling KN (VKN) procedure is the same as that of

KN because, statistically, the two procedures are identical in conducting comparisons and making

elimination decisions.

Remark 2. The VKN procedure may require a large amount of memory to store simulation out-

puts exactly following the order in the input sequence, especially when the R&S problem has a

large number of alternatives and the variances of replication times are high. For instance, when we

apply the VKN procedure to solve a test problem with 104 alternatives on a personal computer with

4.00 GB RAM (see Section 5 for detailed settings), we encountered situations where the procedure

has to be terminated after using up all of the memory. One may design careful accounting schemes

that would dramatically reduce the memory requirements, e.g., by storing cumulative sums up to

the point where all replications in the input sequence have returned.

4. Asymptotic Parallel Selection Procedures

The nice asymptotic properties of the sample-mean estimators Ȳi(n) in Section 2 motivate us to

design fully sequential selection procedures that are asymptotically valid and are computationally

more efficient than VF procedures. Our goal is to design a simple and easily executable fully

sequential procedure that uses all simulation observations in the output sequence, allows different

surviving alternatives to have different sample sizes, and has a provable asymptotic validity in a

meaningful asymptotic regime.

To design such a procedure the key is to decide when to compare surviving alternatives and

make elimination decisions. For that we introduce the concept of a phantom alternative, which is

an alternative that does not need to be simulated (i.e., simulation time is zero) and compared, and

is used only for counting purposes. We add the phantom alternative after each round-robin cycle in

the input sequence and then start simulation. Whenever the phantom alternative completes (i.e.,

appears in the output sequence), we compare all surviving alternatives using all their available

observations (in the output sequence) and make elimination decisions. Notice that, when there is

only a single processor, the phantom alternative completes at the moment that the last surviving

alternative in the round-robin cycle completes. Then, comparing and eliminating according to the

phantom alternative is exactly the same as what the KN procedure does. When there are multiple

processors, different surviving alternatives may have different sample sizes at the moment that

a phantom alternative completes. However, the difference between the sample size of a surviving

Luo, Hong, Nelson and Wu: Sequential R&S Procedures using Parallel Computing
16 Article submitted to Operations Research; manuscript no. OPRE-2013-06-297.R2

alternative and that of the phantom alternative is always bounded by the number of processors.

Therefore, the difference between the sample means of a surviving alternative computed based on

input and output sequences may vanish as the sample size of the alternative goes to infinity. This

provides a key to insuring the asymptotic validity of the procedure. Therefore, the completion

times of the phantom alternative serves as a drumbeat process that synchronizes the comparisons

and eliminations and insures the asymptotic validity.

Procedure 2 (Asymptotic Parallel Selection (APS) Procedure)

Step 0. Setup: Select confidence level 1/k < 1−α< 1, IZ parameter δ > 0, and first-stage sample

size n0 ≥ 2. Let a=− log [2α/(k− 1)].

Step 1. Initialization: Let I = {1,2, . . . , k} be the set of alternatives still in contention. Processor

0 manages the input sequence in which all alternatives are stored in a round-robin order from 1

to k. Processor 0 also performs the tasks listed in the following Steps 2–4, including conducting

pairwise comparisons and eliminations. The first m replications in the input sequence are assigned

to the remaining m processors, processors 1,2, . . . ,m, to be simulated. Processors 1,2, . . . ,m work

as follows: take the first alternative queued in the input sequence, generate an observation, and

submit the result to processor 0.

Add a phantom alternative p after each round-robin cycle in the input sequence (but not the set

I). Let r denote the stage which is the current sample size of the phantom alternative in the output

sequence. Let Yi` denote the `th completed observation from alternative i in the output sequence,

and let Nir denote the number of completed observations from alternative i in the output sequence

at the time when the rth observation of the phantom alternative is added to the output sequence.

Record the triple
(
Nir,

∑Nir
`=1 Yi`,

∑Nir
`=1 Y

2
i`

)
for all i∈ I.

Step 2. Collecting Initial Observations: Start simulations on processors 1,2, . . . ,m and wait

until r= n0.

Step 3. Elimination: For all i∈ I, let

Ȳi(Nir) =
1

Nir

Nir∑
`=1

Yi`,

S2
i (Nir) =

1

Nir− 1

Nir∑
`=1

Y 2
i` −

1

Nir

(
Nir∑
`=1

Yi`

)2
 .

For all i, j ∈ I and i 6= j, if Nir ≥ n0 and Njr ≥ n0, let

τij,r =

[
S2
i (Nir)

Nir

+
S2
j (Njr)

Njr

]−1

;

Luo, Hong, Nelson and Wu: Sequential R&S Procedures using Parallel Computing
Article submitted to Operations Research; manuscript no. OPRE-2013-06-297.R2 17

otherwise, let τij,r = 0. This ensures that the comparisons are done between alternatives that have

at least n0 observations. Let Iold = I and let

I = I \
{
i∈ Iold : τij,r

[
Ȳi(Nir)− Ȳj(Njr)

]
<min

{
0,−a

δ
+
δ

2
τij,r

}
for some j ∈ Iold and j 6= i

}
.

Remove alternative i from the input sequence for all i∈ Iold \ I.

Step 4. Stopping Rule: If |I|= 1, then stop all processors and select the alternative whose index

is in I as the best. Otherwise, wait for a new observation. If the new observation is from any

alternative i ∈ I, then update
(
Nir,

∑Nir
`=1 Yi`,

∑Nir
`=1 Y

2
i`

)
and wait for the next observation; if the

observation is from alternative p, then update r= r+ 1 and go to Step 3.

Remark 3. In the APS procedure, we keep updating the sample variances for the surviving alter-

natives, which is similar to KN++ of Kim and Nelson (2006a) designed for R&S problems in

steady-state simulations. In order to show the asymptotic validity of sample-variance updating,

we need some technical condition on the first-stage sample size n0, which is stated in Theorem 1.

While the theoretical condition facilitates the asymptotic proof, it does not prescribe a specific

choice of first-stage sample size in practice.

Notice that, in the APS procedure, we only make elimination decisions when a phantom alternative

completes, but we use all available observations at that time. Therefore, the APS procedure has

several advantages when compared to the VKN procedure. First, it makes use of all available

observations, which leads to a higher efficiency, especially when the simulation effort for generating

each observation is substantial (e.g., the replication time is relatively long). Second, it requires

significantly less memory to store the observations, which makes it feasible to solve large-scale R&S

problems.

The following theorem establishes the asymptotic validity of the APS procedure.

Theorem 1. Let Xi` denote the `th replication from alternative i in the input sequence and Γi`

denote the replication time to generate the observation Xi`, with unknown means µi = E[Xi`] and

unknown (but finite) variance σ2
i = Var[Xi`], for all i= 1,2, . . . , k and `= 1,2, Assume that Xi`

and Xjn are independent of each other when i 6= j or ` 6= n; that Γi` > 0 a.s. for all i and `; and

that µ1 − δ ≥ µ2 ≥ . . .≥ µk, where δ is the IZ parameter. Moreover, let the first-stage sample size

n0 = n0(δ) be a function of δ such that n0→∞ and δ2n0→ 0 as δ→ 0. Then, as δ→ 0, the APS

procedure selects alternative 1 as the best with a probability at least 1−α.

Notice that the asymptotic regime of δ→ 0 (as well as the true difference between the best and

the second-best alternatives µ1 − µ2 → 0) is also used by Kim and Nelson (2006a) in analyzing

the KN++ procedure, where the observations are taken from steady-state simulations which are

Luo, Hong, Nelson and Wu: Sequential R&S Procedures using Parallel Computing
18 Article submitted to Operations Research; manuscript no. OPRE-2013-06-297.R2

stationary but not independent. In Theorem 1, however, we assume that the observations ordered

by the input sequence {Xi`, ` = 1,2, . . .} are i.i.d. but, as shown in Section 2.3, the observations

ordered based on the output sequence {Yi`, `= 1,2, . . .} may not be.

We prove Theorem 1 in the next two subsections.

4.1. Brownian Motion Construction

For a clear presentation, in the remainder of this section we consider only the situation where the

difference between the mean of the best and all other alternatives equals the IZ parameter δ, i.e.,

µ2 = µ3 = · · ·= µk = µ1− δ, which is called the slippage configuration (SC) in the R&S literature.

Consider any pair of alternatives, alternatives i and j. Let N δ
ij = d2a(σ2

i +σ2
j)/δ

2e, where a =

− log [2α/(k− 1)] is defined in Step 0 of the APS procedure and dxe denotes the smallest integer

not less than x. In Section 4.2, it will be clear that N δ
ij is the maximum number of observations

needed from either alternative i or j when comparing alternatives i and j. Let s be any number in

[0,1] and let r= bsN δ
ijc, where bxc denotes the largest integer not greater than x. Define

Zij (s) =

 σ2
i /r+σ

2
j /r

S2
i (Nir)/Nir+S2

j (Njr)/Njr
· s
√

Nδij

σ2
i+σ2

j

[
Ȳi (Nir)− Ȳj(Njr)

]
, s∈ [n0/N

δ
ij,1]

0, s∈ [0, n0/N
δ
ij)

(1)

where N`r is the sample size of alternative `, ` = 1, . . . , k, when the sample size of the phantom

alternative p is Npr = r. To make Zij(·) well-defined, we set Zij (·) = 0 when either Nir = 0 or

Njr = 0. In fact, we are only interested in the case that r≥ n0, i.e., s∈ [n0/N
δ
ij,1], because that the

APS procedure starts eliminating systems at least n0 samples. For mathematical completeness in

the neighbourhood of s= 0, we can artificially set N`r = r, S2
` (N`r) = σ2

` and Ȳ`(N`r) = 0, `= i or j,

in order to make sure that Zij(s) = 0 for s∈ [0, n0/N
δ
ij). However, without additional specifications,

all statements about Zij(s) will refer to the process for s∈ [n0/N
δ
ij,1].

Hong (2006) shows that Zij(s) with the random sample size N`r replaced by the deterministic

n`, the sample variance S2
` (N`r) replaced by σ2

` , and Ȳ` (N`r) replaced by X̄` (n`), `= i or j, has

the same distribution as a Brownian motion when the X`n’s are normally distributed. This result

motivates the definition of Zij(s) in Equation (1). The following lemma shows that Z1j(·) converges

to a Brownian motion process for all j = 2,3, . . . , k.

Lemma 1 (Convergence to a Brownian Motion Process). Let D[0,1] be the Skorohod space

of all right-continuous real-valued functions on [0,1] with limits from the left everywhere, endowed

with the Skorohod J1 topology (see Appendix EC.1.3 for the definition of the standard J1 metric and

Section 3.3 in Whitt (2002) for more background of the space D). Thus, Z1j(·) defined by Equation

Luo, Hong, Nelson and Wu: Sequential R&S Procedures using Parallel Computing
Article submitted to Operations Research; manuscript no. OPRE-2013-06-297.R2 19

(1) with j = 2,3, . . . , k is an element of the Skorohod space D[0,1]. Suppose that the conditions in

Theorem 1 are all satisfied. Then, under the SC, i.e., µ2 = µ3 = · · ·= µk = µ1− δ, we have

Z1j (·)⇒B∆(·), as δ→ 0,

where B∆(t) =B(t) + ∆t, a standard Brownian motion process with a constant drift ∆ =
√

2a.

Proof of Lemma 1: Let εδ = n0/N
δ
1j, where N δ

1j = d2a(σ2
1 +σ2

j)/δ
2e. Recall that n0 →∞ and

δ2n0→ 0 as δ→ 0. Then, N δ
1j→∞ and εδ→ 0 as δ→ 0. Notice that Z1j(s) = 0 for 0≤ s < εδ, which

implies that

Z1j(0) =B∆(0) = 0 and Z1j(·) is right-continuous at s= 0 for all δ. (2)

We next focus only on s∈ [εδ,1], that is, r ∈ [n0,N
δ
1j].

We start by analyzing the first term on the right-hand side (RHS) of Equation (1). Recall that,

at stage r, for alternative ` (`= 1 or j), totally r replications have been sent to the m processors

with N`r replications completed and r−N`r still in simulation. Then, we have r−m≤N`r ≤ r for

all n0 ≤ r≤N δ
1j, which implies that, w.p.1,

sup
s∈[εδ,1]

∣∣∣∣N`r

r
− 1

∣∣∣∣= sup
r∈[n0,N

δ
1j]

∣∣∣∣N`r− r
r

∣∣∣∣≤ m

n0

→ 0,

as δ→ 0. In other words, as δ→ 0, n0→∞, so that r→∞ and N`r/r→ 1 w.p.1 as functions of s

on (0,1]. Notice that this result can be easily extended to the closed space [0,1] given the definition

that N`r = r for s ∈ [0, εδ). In fact, the pointwise convergence guarantees the uniform convergence

on [0,1] under the definition that N`r = r on [0, εδ) and the condition that εδ→ 0 and εδN δ
1j→∞

as δ→ 0. Similar arguments can also be applied to S2
` (N`r) and Ȳ`(N`r), `= 1 or j. Therefore, we

will establish uniform convergence by showing pointwise convergence in the following proof.

Let Ω`r ⊂ {1,2, . . . , r} be the set of the indices of incomplete replications from alternative `, i.e.,

if n∈Ω`r, X`n is still in simulation at stage r. Thus, |Ω`r|= r−N`r. Notice that, for `= 1 or j,

S2
` (N`r) =

1

N`r− 1

N`r∑
n=1

Y 2
`n−

1

N`r

(
N`r∑
n=1

Y`n

)2
 ,

which can be further written as

S2
` (N`r) =

1

N`r− 1

 r∑
n=1

X2
`n−

∑
n∈Ω`r

X2
`n−

1

N`r

(
r∑

n=1

X`n−
∑
n∈Ω`r

X`n

)2


=
r

N`r− 1

1

r

r∑
n=1

X2
`n−

(
1

r

r∑
n=1

X`n

)2


+
1

N`r− 1

− ∑
n∈Ω`r

X2
`n +

(N`r− r)r
N`r

X̄`(r)
2 +

2r

N`r

X̄`(r)
∑
n∈Ω`r

X`n−
1

N`r

(∑
n∈Ω`r

X`n

)2
 .
(3)

Luo, Hong, Nelson and Wu: Sequential R&S Procedures using Parallel Computing
20 Article submitted to Operations Research; manuscript no. OPRE-2013-06-297.R2

Similarly, as δ→ 0 (which implies that n0→∞ and r→∞; for simplicity, we may state only one of

them hereafter), then r/(N`r−1)→ 1 w.p.1. By the strong law of large numbers (SLLN), we know

that r−1
∑r

n=1X
2
`n→ E [X2

`n] = σ2
` + µ2

` , and X̄`(r) = r−1
∑r

n=1X`n→ µ` w.p.1. By the continuous

mapping theorem (Durrett (2004)), the first term of S2
` (N`r) in Equation (3) converges to σ2

` w.p.1

as r→∞.

Notice that, for both `= 1 and j and all n= 1,2, . . . , r,

|X`n| ≤ max
b=1,...,r

|X`b| .

Furthermore, we have N`r ≥ r−m and |Ω`r| ≤m. Then, when n0 >m+1, implying that r >m+1,

the second term of S2
` (N`r) in Equation (3) can be bounded as follows,

1

N`r− 1

− ∑
n∈Ω`r

X2
`n +

(N`r− r)r
N`r

X̄`(r)
2 +

2r

N`r

X̄`(r)
∑
n∈Ω`r

X`n−
1

N`r

(∑
n∈Ω`r

X`n

)2


≤ mr

r−m− 1

[
1

r
max
n=1,...,r

X2
`n +

1

r
X̄`(r)

2 +
r

r−m
X̄`(r) ·

1

r
max
n=1,...,r

X`n +
mr

r−m

(
1

r
max
n=1,...,r

X`n

)2
]

Recall that r−1
∑r

n=1X
2
`n→ σ2

` +µ2
` , and r−1

∑r

n=1X`n→ µ` w.p.1. Then, by Lemma EC.1 in the

appendix, we have

1

r
max
n=1,...,r

X2
`n→ 0 and

1

r
max
n=1,...,r

|X`n| → 0 w.p.1.

By the continuous mapping theorem, the second term of S2
` (N`r) converges to 0 w.p.1 as r→∞.

Therefore, as δ→ 0, S2
` (N`r)→ σ2

` w.p.1. By continuous mapping theorem again, we obtain that

σ2
1/r+σ2

j/r

S2
1(N1r)/N1r +S2

j (Njr)/Njr

→ 1 w.p.1 as δ→ 0. (4)

We next analyze the second term on the RHS of Equation (1). Similarly to what we did above,

we can write Ȳ`(N`r), `= 1 or j, in the following way,

Ȳ`(N`r) =
1

N`r

N`r∑
n=1

Y`n =
1

N`r

[
r∑

n=1

X`n−
∑
n∈Ω`r

X`n

]

=
1

N`r

r∑
n=1

(X`n−µ`) +
r

N`r

µ`−
1

N`r

∑
n∈Ω`r

X`n

=
σ`

√
N δ

1j

N`r

·H`(s) +
r

N`r

µ`−
1

N`r

∑
n∈Ω`r

X`n,

where

H`(s) =

∑r

n=1 (X`n−µ`)

σ`

√
N δ

1j

=

∑bNδ1jsc
n=1 (X`n−µ`)

σ`

√
N δ

1j

, s∈ [εδ,1],

Luo, Hong, Nelson and Wu: Sequential R&S Procedures using Parallel Computing
Article submitted to Operations Research; manuscript no. OPRE-2013-06-297.R2 21

and the last equality holds because r= bN δ
1jsc. Then, we have

s

√
N δ

1j

σ2
1 +σ2

j

[
Ȳ1 (N1r)− Ȳj(Njr)

]
=

N δ
1js

N1r

· σ1√
σ2

1 +σ2
j

·H1(s)−
N δ

1js

Njr

· σj√
σ2

1 +σ2
j

·Hj(s)

+ s

√
N δ

1j

σ2
1 +σ2

j

·
(

r

N1r

µ1−
r

Njr

µj

)

− s

√
N δ

1j

σ2
1 +σ2

j

·

 1

N1r

∑
n∈Ω1r

X1n−
1

Njr

∑
n∈Ωjr

Xjn

 . (5)

By Donsker’s Theorem (Theorem 4.3.2 in Whitt (2002)), as δ→ 0,

H`(·)⇒B`(·),

where B`(·) is a standard Brownian motion process. Furthermore, because H1(·) and Hj(·) are

independent of each other, we have B1(·) and Bj(·) are also independent of each other. Recall that

r = bN δ
1jsc and r/N`r → 1 w.p.1 as δ→ 0. Then, N δ

1js/N`r, as a function of s, converges to the

function that is identically equal to 1 w.p.1, for `= 1 or j. By Theorem 11.4.5 in Whitt (2002), we

have N δ
1js

N1r

· σ1√
σ2

1 +σ2
j

·H1(s)−
N δ

1js

Njr

· σj√
σ2

1 +σ2
j

·Hj(s) : 0< s≤ 1


⇒

 σ1√
σ2

1 +σ2
j

B1(s) +
σj√
σ2

1 +σ2
j

Bj(s) : 0< s≤ 1

 D
= (B(s) : 0< s≤ 1) (6)

where the last equation follows from the independence of B1(·) and Bj(·) and
D
= means “equal in

distribution”.

Because r/N1r→ 1 and r/Njr→ 1 w.p.1 as δ→ 0, µ1 − µj = δ and N δ
1j = d2a(σ2

1 +σ2
j)/δ

2e, we

have as δ→ 0,

s

√
N δ

1j

σ2
1 +σ2

j

·
(

r

N1r

µ1−
r

Njr

µj

)
→ s
√

2a= s∆ (7)

w.p.1 for all s∈ (0,1], where ∆ =
√

2a by definition.

Because r = bN δ
1jsc, we have N δ

1js≤ r+ 1. Recall that N`r ≥ r−m and |Ω`r| ≤m. Then, when

n0 ≥m+ 1 implying that r≥m+ 1,

s

√
N δ

1j

σ2
1 +σ2

j

· 1

N`r

∑
n∈Ω`r

X`n ≤

√
(r+ 1)s

σ2
1 +σ2

j

· m

r−m
· max
n=1,...,r

|X`n|

=

√
sm2

σ2
1 +σ2

j

·
√
r(r+ 1)

r−m
· 1√

r
max
n=1,...,r

|X`n| .

Luo, Hong, Nelson and Wu: Sequential R&S Procedures using Parallel Computing
22 Article submitted to Operations Research; manuscript no. OPRE-2013-06-297.R2

We have already shown that
1

r
max
n=1,...,r

X2
`n→ 0 w.p.1

as r→∞, which implies that
1√
r

max
n=1,...,r

|X`n| → 0 w.p.1

as r→∞. Notice also that
√
r(r+ 1)/(r−m)→ 1 as r→∞. Therefore, as δ→ 0,

s

√
N δ

1j

σ2
1 +σ2

j

· 1

N`r

∑
n∈Ω`r

X`n→ 0 (8)

w.p.1 for both `= 1 and j.

Notice that (6), (7) and (8) correspond to the limits of the three terms on the RHS of Equation

(5), respectively. Therefore, by Theorem 11.4.5 in Whitt (2002), we have as δ→ 0,(
s

√
N δ

1j

σ2
1 +σ2

j

[
Ȳ1 (N1r)− Ȳj(Njr)

]
: 0< s≤ 1

)
⇒B(s) + s∆ = (B∆(s) : 0< s≤ 1) . (9)

Then, by (4) and (9), and by Theorem 11.4.5 in Whitt (2002) again, we have Z1j (·)⇒B∆(·) on

(0,1] as δ→ 0. Combined with the result in Equation (2), we conclude the proof of the lemma.

Remark 4. Lemma 1 establishes the foundation for showing the statistical validity of the APS

procedure. Notice that the proof of Lemma 1 does not require the condition that Γi` and Γjn

are independent for i 6= j or ` 6= n. This indicates that the APS procedure can be implemented

in parallel computing environments where the multiple processors are not identical so that the

replication times may be dependent on each other.

4.2. The Asymptotic Validity

Before proving the asymptotic validity of the APS procedure, we first define the continuation region

that determines the elimination decisions in the procedure. Let

U δ
1j(s) = max

0,
a
√
σ2

1 +σ2
j

δ
√
N δ

1j

−
δ
√
N δ

1j

2
√
σ2

1 +σ2
j

·
σ2

1/r+σ2
j/r

S2
1(N1r)/N1r +S2

j (Njr)/Njr

· s

 .

The symmetric continuation region Cδ
1j for Z1j(·) is formed by the upper boundary U δ

1j(s) and

lower boundary −U δ
1j(s). Then either alternative 1 or j is eliminated depending on whether Z1j(·)

exits the continuation region Cδ
1j from above or below. By Equation (4), it is easy to show that

U δ
1j(s)→U(s) = max

{
0,
a

∆
− ∆

2
· s
}
, w.p.1 as δ→ 0,

where ∆ =
√

2a. Then, the asymptotic region C, formed by U(s) and −U(s), is a symmetric

triangular region.

Luo, Hong, Nelson and Wu: Sequential R&S Procedures using Parallel Computing
Article submitted to Operations Research; manuscript no. OPRE-2013-06-297.R2 23

Let T δ1j denote the stopping time at which Z1j(·) first exits the continuation region Cδ
1j, i.e.,

T δ1j = inf
{
s : |Z1j (s)| ≥U δ

1j(s)
}
, (10)

and let T1j denote the stopping time at which B∆(·) first exits the triangular region C, i.e.,

T1j = inf {s : |B∆ (s)| ≥U(s)} . (11)

Lemma 1 establishes the weak convergence of Z1j(·) to B∆(·) on [0,1]. However, elimination deci-

sions are only made at these stopping times. To bound the probability of incorrect selection, we

need a stronger result that ensures the value at the stopping time Z1j(T
δ
1j) can be approximated

by B∆(T1j), which can be guaranteed by the following lemma.

Lemma 2 (Convergence to a Brownian Motion Process at the Stopping Time).

Suppose that the conditions in Theorem 1 are all satisfied. Then,

Z1j(T
δ
1j)⇒B∆(T1j)

as δ→ 0.

Remark 5. The key idea for proving Lemma 2 is exactly the same as that of proving Proposition

3.2 of Kim et al. (2005). We summarize the proof in Appendix EC.1.3 for completeness.

To prove the validity of the APS procedure, we also need the lemma of Fabian (1974), i.e.,

Lemma EC.2 in the appendix, on the probability of B∆(·) exiting the triangular continuation region

C. This lemma is the foundation of many sequential R&S procedures, including those of Kim and

Nelson (2001, 2006a) and Hong and Nelson (2005, 2007). Now we are ready to prove Theorem 1.

Proof of Theorem 1: We start from the slippage configuration where µ1 − δ = µ2 = · · · = µk.

Then, we have

lim inf
δ→0

P{select alternative 1} = lim inf
δ→0

[
1−P

{
k−1⋃
j=1

{alternative j eliminates 1}

}]

≥ 1− limsup
δ→0

k−1∑
j=1

P{alternative j eliminates 1} , (12)

where (12) is due to Bonferroni inequality. Notice that

limsup
δ→0

P{alternative j eliminates 1} = limsup
δ→0

P
{
Z1j

(
T δ1j
)
≤ 0
}

(13)

= P{B∆ (T1j)≤ 0} (14)

=
1

2
e−

a
∆ ∆ =

α

k− 1
, (15)

Luo, Hong, Nelson and Wu: Sequential R&S Procedures using Parallel Computing
24 Article submitted to Operations Research; manuscript no. OPRE-2013-06-297.R2

where (13) denotes the probability that alternative j eliminates alternative 1 since Z1j(·) exits the

continuation region through the lower boundary, (14) follows from Lemma 2, and (15) follows from

Lemma EC.2. Plugging (15) into (12) yields

lim inf
δ→0

P{select alternative 1} ≥ 1−
k−1∑
j=1

α

k− 1
= 1−α.

For general cases under the IZ formulation, i.e., µ1− δ ≥ µ2 ≥ · · · ≥ µk, Z1j(·) defined in (1) no

longer converges in distribution to B∆(·). However, we can define

V1j (s) =
σ2

1/r+σ2
j/r

S2
1(N1r)/N1r +S2

j (Njr)/Njr

· s

√
N δ

1j

σ2
1 +σ2

j

[
Ȳ1 (N1r)− Ȳj(Njr)− (µ1−µj − δ)

]
.

Then,

V1j (s)≤Z1j (s) , a.s. (16)

By Lemma 1, we know that V1j (·)⇒B∆(·) as δ→ 0. Let

T δ,V1j = inf
{
s : |V1j (s)| ≥U δ

1j(s)
}
.

Then,

limsup
δ→0

P{alternative j eliminates 1} = lim sup
δ→0

P
{
Z1j

(
T δ1j
)
≤ 0
}

≤ limsup
δ→0

P
{
V1j

(
T δ,V1j

)
≤ 0
}

(17)

= P{B∆ (T1j)≤ 0}

=
α

k− 1
, (18)

where (17) follows from (16). Plugging (18) into (12) concludes the proof of the theorem.

5. Numerical Implementation

In this section, we report on an extensive numerical study to test the effectiveness and efficiency of

both the VKN procedure and the APS procedure and their applicability to solve large-scale R&S

problems in parallel computing environments.

5.1. Master/Slave Structure and a Parallel Computing Simulator

We design a parallel computing environment using the Master/Slave structure, a widely used

structure for parallel computing, which contains two functions: a single master and multiple slaves.

The master maintains data information for all alternatives and manipulates two daemon threads

(daemon threads can be viewed as service providers for other threads running in the same program.

When the only remaining threads are daemon threads, the program will exit automatically), called

Luo, Hong, Nelson and Wu: Sequential R&S Procedures using Parallel Computing
Article submitted to Operations Research; manuscript no. OPRE-2013-06-297.R2 25

“to-do” and “compare”. The to-do thread manages the input sequence of all surviving alternatives

and the compare thread conducts pairwise comparisons and elimination decisions based on the

simulation observations collected from the slaves. Each slave, created as a daemon thread, works

in a very simple cycle: taking an alternative from the to-do thread, generating an observation, and

submitting the observation to the compare thread for comparison. In the procedures, we denote

the master as processor 0 and the slaves as processors 1,2, . . . ,m.

This parallel structure is programmed in Java and can be easily implemented on various computer

configurations, e.g., Windows operating systems on personal computers or Linux operating systems

on local servers. Moreover, with a communication protocol (e.g., HTTP), it can be extended to

computer farms or clouds. For more introduction about the Master/Slave structure, we refer to

Silvay and Buyya (1999) for general details and Fujimoto et al. (2010) for an implementation in

the cloud. We implement our procedures using the Master/Slave structure on a local server with 48

working cores and 64 GB memory. The server runs CentOS 6.2, a Linux-based operating system.

With respect to the simulation experiments that have been used to evaluate existing R&S pro-

cedures in the literature, the observations are often generated in a very simple way, e.g., Kim and

Nelson (2001) simulate one observation by generating a normal random variable, so the replication

time for generating one observation tends to be extremely short. This is a common and reasonable

approach for testing procedures in a single-processor computing environment, where replication

times do not affect the output sequence, and, therefore, do not affect the properties of the pro-

cedure, as evaluated by the probability of correct selection, or the efficiency of the procedure, as

evaluated by the expected total number of observations. In a parallel computing environment,

however, replication times affect the output sequence, affecting both the properties and efficiency

of the procedure. Therefore, we need to take them into consideration in experimental designs.

There are two approaches to evaluating the impact of (random) replication times. The first one

is to make the slaves sleep artificially for a certain amount of time. However, this approach may

be very time-consuming in testing large-scale R&S problems with a large number of processors,

because replication times cannot be set too small for two reasons. One is due to the limitation of

Java, which may lose accuracy when the elapsed time is less than one millisecond. In addition, it

takes time to wake up a sleeping thread and it is difficult to fully control the frequent sleep-active

cycles in a punctual manner. The other reason is the potential overhead on the master caused by

comparison work. No matter how observations are generated, either in parallel or sequentially, they

must be recorded one-by-one in the master for pairwise comparison. Even if time for processing

one observation is relatively small (within 0.1 milliseconds by a rough estimation), it could cause

many observations to be queueing in front of the master when the unit comparison time exceeds

Luo, Hong, Nelson and Wu: Sequential R&S Procedures using Parallel Computing
26 Article submitted to Operations Research; manuscript no. OPRE-2013-06-297.R2

the ratio of the replication time to the number of slaves. Such cases are not representative of real

situations.

These concerns motivate us to consider a second approach to test parallel computing R&S proce-

dures: we build a simulator on a single processor to simulate the situations in a parallel computing

environment. As discussed in Section 2.1, experiments in a parallel computing environment can

be considered as a multi-server queue. Thus, they may be simulated using a typical discrete-event

simulation mechanism, where replication times are simulated under the simulation clock instead of

the real clock. By managing the simulation clock properly, we can guarantee correct logic of events

happening on the simulator.

In Section 5.2 we conduct an extensive numerical study on the simulator to evaluate the effec-

tiveness and sampling efficiency of both the VKN and the APS procedures. In Section 5.3 we apply

the APS procedure to solve a practical R&S problem with more than 20,000 alternatives in an

actual parallel computing environment and analyze its performance.

5.2. The Effectiveness and Sampling Efficiency Tests

We assume that Xi` follows a normal distribution with mean µi and variance σ2
i , and Γi` follows

an exponential distribution with mean E[Γi`] = γ for all i = 1,2, . . . , k and ` = 1,2, To study

how dependence between Xi` and Γi` affects the performance of the procedure, we consider three

scenarios in which Xi` and Γi` are independent, positively correlated and negatively correlated,

respectively. For these three scenarios, we can use the NORTA method of Cario and Nelson (1998)

to generate Γi` and Xi` as follows,

Γi` = −γ log
(
1−Φ(W 1

i`)
)

Xi` = µi +σi

(
ρW 1

i` +
√

1− ρ2W 2
i`

)
where Wi` = (W 1

i`,W
2
i`) is a bivariate standard normal vector with correlation zero. When ρ = 0,

Xi` and Γi` are independent, and when ρ > 0 (or < 0), Xi` and Γi` are positively (or negatively)

correlated.

We first consider the slippage configuration (SC) of means where µ1 = δ,µ2 = µ3 = · · ·= µk = 0

and the equal-variance configuration where σi = 1 for all i. The main goal of the experiment is

to demonstrate that our procedures can solve large-scale problems using multiple processors, so

we vary the number of alternatives from k = 103 to k = 104 and the number of processors as

m = 4,48,96. The first-stage sample size is fixed to n0 = 16, and the IZ parameter is specified

as δ = 1/
√
n0. The expected replication time is γ = 100 units (in simulation clock time), and the

correlation is ρ = 0, ρ = 0.8 and ρ = −0.8 for independent, positively correlated and negatively

Luo, Hong, Nelson and Wu: Sequential R&S Procedures using Parallel Computing
Article submitted to Operations Research; manuscript no. OPRE-2013-06-297.R2 27

correlated cases, respectively. The targeted probability of correct selection (PCS) is set to 0.95, i.e.,

1−α= 0.95. To achieve two-digit precision of the estimated PCS, we made 1,000 macroreplications

in all configurations.

The SC is often considered as a difficult configuration since all inferior alternatives are close to

the best. For many practical large-scale problems, a substantial number of the inferior alternatives

may be significantly different from the best. Therefore, we consider another configuration of means,

called grouped-decreasing-means (GDM) configuration, in which 10%, 20%, 30% and 40% of the

alternatives are δ, 2δ, 3δ and 4δ different from the best. The means of GDM are defined as follows,

µi =


δ, i= 1,
0, i= 2, . . . , d0.1ke+ 1,
−δ, i= d0.1ke+ 2, . . . , d0.3ke+ 1,
−2δ, i= d0.3ke+ 2, . . . , d0.6ke+ 1,
−3δ, i= d0.6ke+ 2, . . . , k.

To make the test problem more difficult to solve, we consider an increasing-variance configuration

where σ2
i = |µi− δ|+ 2δ, and the IZ parameter is δ= 0.5. The first-stage sample size for the GDM

is set to n0 = 10.

In Table 1 we summarize the simulation results for both the VKN and APS procedures in all

scenarios under the SC settings when the number of alternatives is k= 103. We report the average

total number of observations generated (Total Samples) with 95% confidence interval, the average

simulation time for completing one macroreplication of either procedure (Makespan) with 95%

confidence interval, and the estimated PCS, across 1,000 macroreplications.

From the table we have several findings. First, both the VKN and APS procedures can deliver

the desired PCS, but the VKN procedure tends to be more conservative than the APS procedure,

which may be because the APS procedure uses variance updating and it is valid only asymptot-

ically. Second, it seems that the correlations between performance outputs and replication times

do not play an important role. Third, the total sample sizes needed for different numbers of pro-

cessors m are almost the same and the makespan reduces linearly as m increases, which implies

multiple processors are attractive for R&S problems. However, it is worthwhile pointing out that

the makespan is computed without considering the time for processing elimination decisions on

the simulator, which results a linear speedup. A linear speedup is seldom achieved in an actual

parallel computing environment because the processing capacity of the master and the overhead

of I/O (Input/Output) between the master and the slaves could affect the speedup as the number

of processors increases. Intuitively, if there are too many slaves and the replication times are too

short, then it is inevitable that many observations are ready to be sent back to the master for

elimination while the master is not able to finish pairwise comparisons immediately, which, as a

consequence, may accumulate a queue in front of the master (see Appendix EC.2 for an example).

Luo, Hong, Nelson and Wu: Sequential R&S Procedures using Parallel Computing
28 Article submitted to Operations Research; manuscript no. OPRE-2013-06-297.R2

Table 1 Summary under the SC settings when k= 103.

Configuration
m= 4

Independent Positive Corr. Negative Corr.

VKN
Total Samples 3.528× 105 3.554× 105 3.469× 105

±0.032× 105 ±0.027× 105 ±0.030× 105

Makespan 8.821× 106 8.884× 106 8.673× 106

±0.079× 106 ±0.069× 106 ±0.075× 106

PCS 0.999 0.998 0.999

APS
Total Samples 1.788× 105 1.788× 105 1.791× 105

±0.013× 105 ±0.013× 105 ±0.013× 105

Makespan 4.470× 106 4.469× 106 4.478× 106

±0.033× 106 ±0.032× 106 ±0.033× 106

PCS 0.986 0.987 0.984

Configuration
m= 48

Independent Positive Corr. Negative Corr.

VKN
Total Samples 3.529× 105 3.553× 105 3.545× 105

±0.032× 105 ±0.032× 105 ±0.032× 105

Makespan 7.358× 105 7.401× 105 7.385× 105

±0.067× 105 ±0.066× 105 ±0.066× 105

PCS 1.000 0.999 0.996

APS
Total Samples 1.792× 105 1.787× 105 1.792× 105

±0.013× 105 ±0.013× 105 ±0.013× 105

Makespan 3.733× 105 3.722× 105 3.733× 105

±0.028× 105 ±0.028× 105 ±0.027× 105

PCS 0.981 0.988 0.986

Configuration
m= 96

Independent Positive Corr. Negative Corr.

VKN
Total Samples 3.578× 105 3.596× 105 3.512× 105

±0.031× 105 ±0.029× 105 ±0.034× 105

Makespan 3.732× 105 3.760× 105 3.671× 105

±0.033× 105 ±0.031× 105 ±0.036× 105

PCS 0.998 0.998 0.997

APS
Total Samples 1.792× 105 1.792× 105 1.786× 105

±0.013× 105 ±0.013× 105 ±0.013× 105

Makespan 1.867× 105 1.867× 105 1.861× 105

±0.014× 105 ±0.014× 105 ±0.014× 105

PCS 0.982 0.984 0.978

For the GDM configuration, to avoid reporting similar results, we consider only the independent

case (correlation ρ = 0) using the APS procedure when the number of processors is m = 48 and

the number of alternatives varies from k= 1×103,2×103, . . . ,104. The estimated PCS for each k is

always greater than the desired level 0.95. Figure 6 plots the average total sample size for different

k’s, from which we see that the total number of samples appears to increase almost linearly.

5.3. The Three Stage Buffer Allocation Problem

We consider a three-stage flowline with a finite number of buffer storage locations in front of

stations 2 and 3 (including the one in service at each station, denoted as x4 and x5) and an infinite

number of jobs in front of station 1 (see Buzacott and Shanthikumar (1993), Pichitlamken et al.

Luo, Hong, Nelson and Wu: Sequential R&S Procedures using Parallel Computing
Article submitted to Operations Research; manuscript no. OPRE-2013-06-297.R2 29

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5
x 10

5

number of alternatives

to
ta

l s
am

pl
e

si
ze

× 103

Figure 6 Total sample size vs. number of systems when m= 48.

(2006) and Xu et al. (2010)). There is a single server at each station, and the service time at

station i is exponentially distributed with service rate xi, i= 1,2,3. If the buffer of station i is full,

then station i− 1 is blocked (i.e., production blocking) and a finished job cannot be released from

station i−1. The total number of buffer locations and the total service rates are limited. The goal

is to find an allocation of buffer locations and service rates such that the steady-state throughput

of the flowline is maximized. The constraints of this problem are x1 + x2 + x3 ≤ 20, x4 + x5 = 20,

1≤ xi ≤ 20 and xi ∈Z+ for i= 1,2, . . . ,5. The problem has totally k= 21,660 feasible solutions. For

any feasible solution, the throughput is estimated from running a simulation experiment with total

simulation time being 1000 units and the warm-up period being 500 units (in simulation clock time).

This problem size with 21,660 alternatives was often considered too large to be solved by R&S

procedures. In the simulation literature, it is often solved by optimization via simulation algorithms,

as in Pichitlamken et al. (2006) and Xu et al. (2010). With parallel computing environments,

however, we may solve this problem as a R&S problem.

By solving the balance equations for the underlying Markov chain from Buzacott and Shan-

thikumar (1993), we obtain that the optimal solutions are (6,7,7,12,8) and (7,7,6,8,12) (denoted

as best alternatives) with steady-state throughput 5.776. We set the IZ parameter as δ= 0.01 and

define the feasible solutions with steady-state throughput within δ from the best as good alter-

natives. The event of selecting one from either the best or the good alternatives is defined as a

“correct selection”. Table 2 provides the information for all best and good alternatives.

Unlike the experiments reported in Section 5.2, which are implemented on a simulator of parallel

computing environments, we solve this problem on a (real) local server with 48 processors and

64 GB memory and running CentOS 6.2, a Linux-based operating system. To understand how

the number of processors (i.e., slaves) affect the performances of the APS procedure, we test this

Luo, Hong, Nelson and Wu: Sequential R&S Procedures using Parallel Computing
30 Article submitted to Operations Research; manuscript no. OPRE-2013-06-297.R2

Table 2 Best and good alternatives for the buffer allocation problem.

Alternative Throughput Status
(6,7,7,12,8) 5.776 Best
(7,7,6,8,12) 5.776 Best
(6,7,7,13,7) 5.772 Good
(7,7,6,7,13) 5.772 Good
(6,7,7,11,9) 5.771 Good
(7,7,6,9,11) 5.771 Good

problem with different numbers of processors, m = 1,4,8,16,32,48. In these experiments, we set

the first-stage sample size n0 = 10 and the desired PCS as 0.95.

Figure 7 captures a snapshot of the status of the threads for the Master/Slave structure after

starting the APS procedure with 4 slaves. From the figure, we observe that all slaves (denoted as

slaves 0 to 3) are working in parallel to generate samples while the two threads in the master,

named “consume sample” thread (i.e., the compare thread) and “produce alt” thread (i.e., the

to-do thread) are idling at that time since the elimination has not been conducted and the input

sequence has already been prepared.

In Table 3 we report the average total sample size with 95% confidence interval, the average

makespan with 95% confidence interval, and the estimated PCS, based on 100 macroreplications.

We find that the total sample sizes are almost the same for various numbers of slaves and the APS

procedure can always deliver a correct selection. However, we also notice that the makespan (i.e.,

total time to complete the procedure) seems not to reduce in proportion to the number of slaves.

This is because the R&S procedure is not completely parallel. To estimate what percentage of the

procedure is executed in parallel, we fit the average makespan based on Amdahl’s law (Amdahl

(1967)), which states that the speedup of parallelism can be defined as 1
(1−P)+P/m

, where P the

Figure 7 A screenshot of the Master/Slave with the number of processors m= 4.

Luo, Hong, Nelson and Wu: Sequential R&S Procedures using Parallel Computing
Article submitted to Operations Research; manuscript no. OPRE-2013-06-297.R2 31

Table 3 Summary of three-stage-buffer-allocation example with different m’s.

Number of Slaves m= 1 m= 4 m= 8 m= 16 m= 32 m= 48
Total samples (×105) 2.426 2.434 2.442 2.442 2.433 2.436

±0.004 ±0.004 ±0.004 ±0.004 ±0.003 ±0.004
Makespan (minutes) 370.5 129.4 94.4 68.3 41.7 34.2

±1.9 ±2.3 ±3.1 ±4.1 ±3.2 ±1.9
PCS 1.00 1.00 1.00 1.00 1.00 1.00

proportion of a program that can be made parallel, 1−P is the remaining proportion that cannot

be parallelized, and m is the number of processors. Suppose the makespan, T , can be modeled as

follows,

T = β

[
(1−P) +

P

m

]
+ ε= (β−βP) +βP · 1

m
+ ε= c0 + c1

1

m
+ ε

where β is the constant coefficient and ε is random noise. By a linear regression, we obtain that

c0 = 40.4 and c1 = 332.9 (with R2 ≥ 0.994), which implies that P = 0.892, indicating that 89.2%

of the program can be made parallel, a very high compatibility. Notice that this result is what

we expected because the vast majority of the task are independent simulation runs that can be

easily parallelized and it suggests that large-scale R&S problems may be effectively solved using a

parallel computing environment when it is available.

6. Conclusions and Future Work

In this paper, we show that it is very attractive to solve large-scale R&S problems using parallel

computing environments, which may reduce total computational time by an order of magnitude and

greatly enlarge the set of R&S problems that are considered solvable. However, we also find that

a direct implementation of sequential R&S procedures in a parallel computing environment may

lead to unexpected statistical issues and affect the statistical validity and efficiency of procedures.

In this paper, we design two different approaches to solve R&S problems in parallel computing

environments.

To further improve the efficiency of the procedures, there are a few issues that are worth future

investigation. First, we adopted a straightforward round-robin rule in the input sequence in this

paper. However, this may not be necessary. Indeed, a higher level of efficiency may be achievable if

we use more carefully chosen input sequences. Second, the current Master/Slave structure requires

a large amount of communication between the master and slaves. When simulation experiments

are computationally fast or there are a very large number of slaves, the master may become a

bottleneck. More effective ways of handling the operations on the master are also worth studying.

Luo, Hong, Nelson and Wu: Sequential R&S Procedures using Parallel Computing
32 Article submitted to Operations Research; manuscript no. OPRE-2013-06-297.R2

Acknowledgments

The authors would like to thank the associate editor and two anonymous referees for their insightful and

detailed comments that have significantly improved this paper. A preliminary version of this paper (Luo and

Hong (2011)) was published in the Proceedings of the 2011 Winter Simulation Conference. This research was

supported in part by the Hong Kong Research Grants Council [GRF XXX], the National Science Foundation

[Grant XXX] and the Natural Science Foundation of China [Grants 71401104 and 71421002].

Jun Luo is an assistant professor of Antai College of Economics and Management at Shanghai

Jiao Tong University. His research interests include stochastic modeling and simulation, with their

applications in service operations management and healthcare management.

L. Jeff Hong is a Chair Professor of Management Sciences in the College of Business at the

City University of Hong Kong. His research interests include stochastic simulation, stochastic

optimization, and financial engineering and risk management.

Barry L. Nelson is the Walter P. Murphy Professor and Chair of the Department of Industrial

Engineering and Management Sciences at Northwestern University. His research addresses statis-

tical issues in the design and analysis of stochastic computer simulation experiments, including

metamodeling, multivariate input modeling, simulation optimization, input uncertainty quantifi-

cation, and variance reduction. He is a Fellow of INFORMS and IIE.

Yang Wu received his bachelor degree from Software Institute at Nanjing University and his

master degree from Industrial Engineering and Logistics Management at the Hong Kong University

of Science and Technology. Currently he is a software development engineer at the Alibaba Group

in China.

References

Amdahl, Gene. 1967. Validity of the single processor approach to achieving large-scale computing capabilities.

AFIPS Conference Proceedings 30 483–485.

Bechhofer, Robert E. 1954. A single-sample multiple decision procedure for ranking means of normal popu-

lations with known variances. The Annals of Mathematical Statistics 25 16–39.

Bechhofer, Robert E., Thomas J. Santner, David M. Goldsman. 1995. Design and Analysis of Experiments

for Statistical Selection, Screening, and Multiple Comparisons. John Wiley & Sons, New York.

Branke, Jürgen, Stephen E. Chick, Christian Schmidt. 2007. Selecting a selection procedure. Management

Science 53 1916–1932.

Buzacott, John A., J. George Shanthikumar. 1993. Stochastic Models of Manufacturing Systems. Prentice

Hall.

Cario, M. C., B. L. Nelson. 1998. Numerical methods for fitting and simulating autoregressive-to-anything

processes. INFORMS Journal on Computing 10 72–81.

Luo, Hong, Nelson and Wu: Sequential R&S Procedures using Parallel Computing
Article submitted to Operations Research; manuscript no. OPRE-2013-06-297.R2 33

Chen, Chun-Hung, Jianwu Lin, Enver Yücesan, Stephen E. Chick. 2000. Simulation budget allocation for

further enhancing the efficiency of ordinal optimization. Discrete Event Dynamic Systems 10 251–270.

Chen, E. Jack. 2005. Using parallel and distributed computing to increase the capability of selection proce-

dures. Proceedings of the 2005 Winter Simulation Conference. 723–731.

Chick, S. E., P. I. Frazier. 2012. Sequential sampling with economics of selection procedures. Management

Science 58(3) 550–569.

Chick, Stephen E., Noah Gans. 2009. Economic analysis of simulation selection problems. Management

Science 55 421–437.

Chick, Stephen E., Koichiro Inoue. 2001a. New procedures to select the best simulated system using common

random numbers. Management Science 47 1133–1149.

Chick, Stephen E., Koichiro Inoue. 2001b. New two-stage and sequential procedures for selecting the best

simulated system. Operations Research 49 732–743.

Durrett, Richard. 2004. Theory and Examples, Third Edition. Duxbury Press.

Fabian, Vaclav. 1974. Note on anderson’s sequential procedures with triangular boundary. The Annals of

Statistics 2 170–176.

Foster, Ian. 1995. Designing and Building Parallel Programs: Concepts and Tools for Parallel Software

Engineering . Parallel programming / scientific computing, Addison-Wesley.

Fujimoto, Richard M. 1990. Parallel discrete event simulation. Communications of the ACM 33 30–53.

Fujimoto, Richard M., Asad Waqar Malik, Alfred J. Park. 2010. Parallel and distributed simulation in the

cloud. SCS Modeling and Simulation Magazine 1 Society for Modeling and Simulation, Intl.

Glynn, Peter W., Philip Heidelberger. 1991. Analysis of parallel replicated simulations under a completion

time constraint. ACM Transactions on Modeling and Computer Simulation 1 3–23.

Heidelberger, Philip. 1988. Discrete event simulation and parallel processing: statistical properties. SIAM

Journal on Scientific and Statistical Computing 6 1114–1132.

Hong, L. Jeff. 2006. Fully sequential indifference-zone selection procedures with variance-dependent sampling.

Naval Research Logistics 53 464–476.

Hong, L. Jeff, Barry L. Nelson. 2005. The tradeoff between sampling and switching : new sequential proce-

dures for indifference-zone selection. IIE Transactions 37 623–634.

Hong, L. Jeff, Barry L. Nelson. 2007. Selecting the best system when systems are revealed sequentially. IIE

Transactions 39 723–734.

Hong, L. Jeff, Barry L. Nelson. 2009. A brief introduction to optimization via simulation. Proceedings of the

2009 Winter Simulation Conference 75–85.

Hsieh, M., P. W. Glynn. 2009. New estimators for parallel steady-state simulations. Proceedings of the 2009

Winter Simulation Conference 469–474.

Luo, Hong, Nelson and Wu: Sequential R&S Procedures using Parallel Computing
34 Article submitted to Operations Research; manuscript no. OPRE-2013-06-297.R2

Kim, S.-H., B. L. Nelson, James R. Wilson. 2005. Some almost-sure convergence properties useful in sequen-

tial analysis. Sequential Anal. 24(4) 411–419.

Kim, Seong-Hee, Barry L. Nelson. 2001. A fully sequential procedure for indifference-zone selection in

simulation. ACM Transactions on Modeling and Computer Simulation 11 251–273.

Kim, Seong-Hee, Barry L. Nelson. 2006a. On the asymptotic validity of fully sequential selection procedures

for steady-state simulation. Operations Research 54 475–488.

Kim, Seong-Hee, Barry L. Nelson. 2006b. Selecting the best system. Shane G. Henderson, Barry L. Nelson,

eds., Elsevier Handbooks in Operations Research and Management Science: Simulation. Elsevier, 501–

534.

Luo, Jun, L. Jeff Hong. 2011. Large-scale ranking and selection using cloud computing. Proceedings of the

2011 Winter Simulation Conference 4051–4061.

Misra, Jayadev. 1986. Distributed discrete-event simulation. ACM Computing Surveys 18 39–65.

Nelson, Barry L., Julie Swann, David Goldsman, Wheyming Song. 2001. Simple procedures for selecting the

best simulated system when the number of alternatives is large. Operations Research 49 950–963.

Ni, Eric Cao, Susan R. Hunter, Shane G. Henderson. 2013. Ranking and selection in a high performance

computing environment. Proceedings of the 2013 Winter Simulation Conference 833–845.

Pichitlamken, Juta, Barry L. Nelson, L. Jeff Hong. 2006. A sequential procedure for neighborhood selection-

of-the-best in optimization via simulation. European Journal of Operational Research 173 283–298.

Pinedo, Michael L. 2008. Scheduling: Theory, Algorithms, and Systems. Third edition ed. Springer.

Rinott, Yosef. 1978. On two-stage selection procedures and related probability-inequalities. Communications

in Statistics - Theory and Methods A7 799–811.

Silvay, Lúıs Moura E, Rajkumar Buyya. 1999. High Performance Cluster Computing: Programming and

Applications, chap. 1. Parallel programming models and paradigms. Prentice Hall, 4–27.

Stein, Charles. 1945. A two-sample test for a linear hypothesis whose power is independent of the variance.

The Annals of Mathematical Statistics 16 243–258.

Whitt, Ward. 2002. Stochastic-process limits. Springer Series in Operations Research, Springer-Verlag, New

York.

Xu, Jie, Barry L. Nelson, L. Jeff Hong. 2010. Industrial strength COMPASS: A comprehensive algorithm and

software for optinization via simulation. ACM Transactions on Modeling and Computer Simulation 20

1–29.

Yücesan, Enver, Yuh-Chuyn Luo, Chun-Hung Chen, Insup Lee. 2001. Distributed web-based simulation

experiments for optimization. Simulation Practice and Theory 9 73–90.

e-companion to Luo, Hong, Nelson and Wu: Sequential R&S Procedures using Parallel Computing ec1

Technical Notes and Additional Numerical Results

EC.1. Technical Notes

EC.1.1. Derivation of the Asymptotic Independence in Section 2.3

Because there is only alternative 1, for notational simplicity we omit the 1 (denoting alternative 1)

in the subscript of Y1` and replace Y1` by Y` in this section. We first derive closed-form expressions

for Y`, `= 1,2, . . ., and their properties.

Since the m processors are identical and the service time of each customer (replication time)

is exponentially distributed with mean µ1, by the Markovian property, we know that the inter-

departure time between the (`− 1)th and `th customer, denoted by A`, `= 1,2, . . ., are i.i.d. with

mean µ= µ1/m (note that A1 is the departure time for the first customer, which is Y1). At time

t0 = 0, there are m customers assigned to the server pool; at time t`, `= 1,2, . . ., the `th customer

leaves the system and the next customer in queue is immediately admitted to the empty server

(see Figure EC.1).

t10

A1

t2

A2

t3

A3

t`−1
. . . t`

A`

t. . .

m 1 1 1 1 1

1st 2nd 3rd (`− 1)th `th

Figure EC.1 The inter-departure time.

Notice that Y` is the service time of the `th departing customer in this example, for `= 1,2,

Moreover, the service time of the `th departing customer depends on the time point at which it

enters the system. For instance, the first departure can only enter the system at time t0, then

Y1 = A1. The second departure can enter the system at times t1 or t0, with probabilities m·1
m2 or

m·(m−1)

m2 , respectively. Then,

Y2 =

{
A2, w.p. 1

m
,

A1 +A2, w.p. m−1
m
.

The third departure can enter the system at time t2, t1 or t0, with probabilities m·1·m
m3 , m·(m−1)·1

m3 ,

or m·(m−1)·(m−1)

m3 , respectively. Then,

Y3 =


A3, w.p. 1

m
,

A2 +A3, w.p. m−1
m2 ,

A1 +A2 +A3, w.p. (m−1)2

m2 .

ec2 e-companion to Luo, Hong, Nelson and Wu: Sequential R&S Procedures using Parallel Computing

Similarly, like counting the paths in an m-ary tree, we can obtain

Y` =



A`, w.p. 1
m
,

A`−1 +A`, w.p. m−1
m2 ,

...∑`

d=2Ad, w.p. (m−1)`−2

m`−1 ,∑`

d=1Ad, w.p. (m−1)`−1

m`−1 .

Then, based on the closed-form expression for the distribution of Y`, we can further derive the

mean of Y` and expectation of the sample mean estimator Ȳ`(n), respectively, as follows,

E[Y`] =
∑̀
d=1

(
m− 1

m

)`−d
E[Ad] = µ1

[
1−

(
1− 1

m

)`]
,

E
[
Ȳ`(n)

]
= µ1

{
1− m− 1

n

[
1−

(
1− 1

m

)n]}
,

We next use the moment generating function (MGF) to show the asymptotic independence

between Y` and Y`+n as n→∞, that is,

lim
n→∞

(
MY`(t) ·MY`+n(t)−MY`+Y`+n(t)

)
= 0. (EC.1)

Define Y` in a rigorous way. Let D` = s denote the event that the `th departing customer enters

the system at time ts, s= 0,1, . . . , `− 1. Conditioning on D` = s, Y` can be written as follows,

Y`|{D` = s}=
∑̀
d=s+1

Ad.

Then, the MGF of Y` is MY`(t) =E [E [etY` |D`]] =
∑`−1

s=0 P{D` = s}E
[
et

∑`
d=s+1Ad

]
.

Recall that A` are independent exponential random variables with mean µ= µ1
m

, so the MGF of

Ad is MAd(t) = (1−µt)−1
. Furthermore, we derive the probability distribution function of D`,

P{D` = s}=


m(m− 1)`−1

m`
, s= 0,

ms(m− 1)`−s−1

m`
, s= 1,2, . . . , `− 1.

Plugging the expressions for P{D` = s} and MAd(t) into MY`(t), and with some algebra, we obtain

that

MY`(t) =
1

1−mµt
− mµt

1−mµt

(
m− 1

m
· 1

1−µt

)`
.

Notice that the MGF MY`(t) is well-defined in the neighborhood of zero. Furthermore, the non-

negativity of MY`(t) implies that 1−mµt > 0, which further indicates that m−1
m
· 1

1−µt < 1. Then,

lim`→∞MY`(t) = 1
1−mµt , which is the MGF of an exponential random variable with mean µ1 =mµ.

e-companion to Luo, Hong, Nelson and Wu: Sequential R&S Procedures using Parallel Computing ec3

By calculating the first order derivative of MY`(t) at t= 0, we also arrive that the conclusion that

lim`→∞E[Y`] = µ1 as in Section 2.3.

Similarly, we can derive the closed-form expression of the MGF of Y`+n as

MY`+n(t) =
1

1−mµt
− mµt

1−mµt

(
m− 1

m
· 1

1−µt

)`+n
.

Then,

lim
n→∞

MY`(t) ·MY`+n(t) =
1

(1−mµt)2
− mµt

(1−mµt)2

(
m− 1

m
· 1

1−µt

)`
. (EC.2)

The MGF of Y` +Y`+n is

MY`+Y`+n(t) = E
[
E
[
et(Y`+Y`+n)|D`,D`+n

]]
=

`−1∑
j=0

`+n−1∑
s=0

P{D` = j,D`+n = s}E
[
et(

∑`
d=j+1Ad+

∑`+n
d=s+1

Ad)
]
. (EC.3)

The joint distribution of D` and D`+n seems complicated because it depends on the relations

between j and s, as well as ` and s. Since we are interested in the situation that n→∞, without

loss of generality, we assume that n≥ 2. We derive the results for the case that `≥ 3 (in fact, the

case that `= 1 or `= 2 can be handled in a similar but simpler way as `≥ 3). By enumerating all

possibilities, we obtain the the joint distribution as follows.

P{D` = j,D`+n = s}=



m(m− 1)n(m− 2)`−1

m`+n
, j = 0, s= 0,

m(m− 1)n+s−1(m− 2)`−s−1

m`+n
, j = 0, s= 1, . . . , `− 1,

ms−`+1(m− 1)n+2`−s−2

m`+n
, j = 0, s= `, . . . , `+n− 1,

m(m− 1)n+j−1(m− 2)`−j−1

m`+n
, j = 1, . . . , `− 1, s= 0,

ms(m− 1)n+j−s−1(m− 2)`−j−1

m`+n
, j = 1, . . . , `− 1, s= 1, . . . , j− 1,

0, j = 1, . . . , `− 1, s= j,
mj(m− 1)n+s−j−1(m− 2)`−s−1

m`+n
, j = 1, . . . , `− 1, s= j+ 1, . . . , `− 1,

ms+j−`(m− 1)n+2`−s−j−2

m`+n
, j = 1, . . . , `− 1, s= `, . . . , `+n− 1.

Then, Equation (EC.3) can be written as the sum of eight parts,

MY`+Y`+n(t) = P{D` = 0,D`+n = 0}E
[
et(

∑`
d=1Ad+

∑`+n
d=1

Ad)
]

(EC.4)

+
`−1∑
s=0

P{D` = 0,D`+n = s}E
[
et(

∑`
d=1Ad+

∑`+n
d=s+1

Ad)
]

(EC.5)

ec4 e-companion to Luo, Hong, Nelson and Wu: Sequential R&S Procedures using Parallel Computing

+
`+n−1∑
s=`

P{D` = 0,D`+n = s}E
[
et(

∑`
d=1Ad+

∑`+n
d=s+1

Ad)
]

(EC.6)

+
`−1∑
j=1

P{D` = j,D`+n = 0}E
[
et(

∑`
d=j+1Ad+

∑`+n
d=1

Ad)
]

(EC.7)

+
`−1∑
j=1

j−1∑
s=1

P{D` = j,D`+n = s}E
[
et(

∑`
d=j+1Ad+

∑`+n
d=s+1

Ad)
]

(EC.8)

+
`−1∑
j=1

P{D` = j,D`+n = j}E
[
et(

∑`
d=j+1Ad+

∑`+n
d=j+1

Ad)
]

(EC.9)

+
`−1∑
j=1

`−1∑
s=j+1

P{D` = j,D`+n = s}E
[
et(

∑`
d=j+1Ad+

∑`+n
d=s+1

Ad)
]

(EC.10)

+
`−1∑
j=1

`+n−1∑
s=`

P{D` = j,D`+n = s}E
[
et(

∑`
d=j+1Ad+

∑`+n
d=s+1

Ad)
]
. (EC.11)

We now deal with the eight parts in Equation (EC.4)–(EC.11) one-by-one.

The first part is

(EC.4) = P{D` = 0,D`+n = 0}E
[
e2t

∑`
d=1Ad+t

∑`+n
d=`+1

Ad

]
=
m(m− 1)n(m− 2)`−1

m`+n
· 1

(1− 2µt)`
· 1

(1−µt)n
,

which converges to zero as n→∞ because of the condition m−1
m
· 1

1−µt < 1 verified above.

The second part is

(EC.5) =
`−1∑
s=0

P{D` = 0,D`+n = s}E
[
et

∑s
d=1Ad+2t

∑`
d=s+1Ad+t

∑`+n
d=`+1

Ad

]
=

`−1∑
s=0

m(m− 1)n+s−1(m− 2)`−s−1

m`+n
· 1

(1−µt)s
· 1

(1− 2µt)`−s
· 1

(1−µt)n

which converges to zero as n→∞ because of the condition m−1
m
· 1

1−µt < 1 verified above.

The third part is

(EC.6) =
`+n−1∑
s=`

P{D` = 0,D`+n = s}E
[
et

∑`
d=1Ad+t

∑`+n
d=s+1

Ad

]
=

`+n−1∑
s=`

ms−`+1(m− 1)n+2`−s−2

m`+n
· 1

(1−µt)2`+n−s

=
m(m− 1)`+n−1

m`+n
· 1

(1−µt)`+n
· −1

1−mµt
+
mn+1(m− 1)`−1

m`+n
· 1

(1−µt)`
· 1

1−mµt

→ 0 +
(m− 1)`−1

m`−1
· 1

(1−µt)`
· 1

1−mµt
, as n→∞.

The fourth part is the same as the second part with only exchanging the positions of s and j,

so (EC.7) also converges to zero as n→∞.

e-companion to Luo, Hong, Nelson and Wu: Sequential R&S Procedures using Parallel Computing ec5

The fifth part is

(EC.8) =
`−1∑
j=1

j−1∑
s=1

P{D` = j,D`+n = s}E
[
et

∑j
d=s+1

Ad+2t
∑`
d=j+1Ad+t

∑`+n
d=`+1

Ad

]
=

`−1∑
j=1

j−1∑
s=1

ms(m− 1)n+j−s−1(m− 2)`−j−1

m`+n
· 1

(1− 2µt)`−j
· 1

(1−µt)n+j−s

=
m(m− 1)n(m− 2)`−1

m`+n
· 1

(1− 2µt)`−1
· 1

(1−µt)n−1
· 1

(1−mµt)2

− m(m− 1)`+n−1

m`+n
· 1

(1−µt)`+n−2
· 1

(1−mµt)2

− m(m− 1)n(m− 2)`−1

m`+n
· 1

(1− 2µt)`−1
· 1

(1−µt)n
· 1

2(1−mµt)2

+
m`(m− 1)n

m`+n
· 1

(1−µt)n
· 1

2(1−mµt)2

→ 0, as n→∞.

The sixth part (EC.9) equals zero because the joint probability equals zero.

The seventh part is

(EC.10) =
`−1∑
j=1

`−1∑
s=j+1

P{D` = j,D`+n = s}E
[
et

∑s
d=j+1Ad+2t

∑`
d=s+1Ad+t

∑`+n
d=`+1

Ad

]
=

`−1∑
j=1

`−1∑
s=j+1

mj(m− 1)n+s−j−1(m− 2)`−s−1

m`+n
· 1

(1− 2µt)`−s
· 1

(1−µt)n+s−j

=
m(m− 1)n(m− 2)`−1

m`+n
· 1

(1− 2µt)`−2
· 1

(1−µt)n
· 1

2(1−mµt)2

−m
`(m− 1)n

m`+n
· (1− 2µt) · 1

(1−µt)n
· 1

2(1−mµt)2

−m(m− 1)`+n−1

m`+n
· 1

(1−µt)`+n−2
· 1

(1−mµt)2
+
m`(m− 1)n

m`+n
· 1

(1−µt)n−1
· 1

(1−mµt)2

→ 0, as n→∞.

The eighth part is

(EC.11) =
`−1∑
j=1

`+n−1∑
s=`

P{D` = j,D`+n = s}E
[
et

∑`
d=j+1Ad+t

∑`+n
d=s+1

Ad

]
=

`−1∑
j=1

`+n−1∑
s=`

ms+j−`(m− 1)n+2`−s−j−2

m`+n
· 1

(1−µt)`−j
· 1

(1−µt)`+n−s

=
m(m− 1)`+n−1

m`+n
· 1

(1−µt)`+n−1
· 1

(1−mµt)2
− m

n+1(m− 1)`−1

m`+n
· 1

(1−µt)`−1
· 1

(1−mµt)2

−m
`(m− 1)n

m`+n
· 1

(1−µt)n
· 1

(1−mµt)2
+
m`+n

m`+n
· 1

(1−mµt)2

→ 0− (m− 1)`−1

m`−1
· 1

(1−µt)`−1
· 1

(1−mµt)2
− 0 +

1

(1−mµt)2
, as n→∞.

ec6 e-companion to Luo, Hong, Nelson and Wu: Sequential R&S Procedures using Parallel Computing

Combining the limits of the eight parts for (EC.4)–(EC.11) and (EC.2) yields the equality in

Equation (EC.1), which concludes the desired result.

EC.1.2. Useful Lemmas

Lemma EC.1. Let (xn : n ≥ 1) be a real-valued sequence such that n−1
∑n

i=1 xi → µ as n→∞,

where µ is finite. Then n−1 maxi=1,...,n |xi| → 0 as n→∞.

Proof: Let sn =
∑n

i=1 xi. Then,

xn
n

=
sn
n
− n− 1

n

sn−1

n− 1
→ µ−µ= 0

as n→∞. Since xn/n→ 0, it follows that for all ε > 0 there exists n∗ = n∗(ε) such that for n>n∗,

|xn|/n≤ ε. For n≥ n∗,

1

n
max
i=1,...,n

|xi| ≤
1

n
max

i=1,...,n∗
|xi|+

1

n
max

i=n∗+1,...,n
|xi|

≤ 1

n
max

i=1,...,n∗
|xi|+ max

i=n∗+1,...,n

|xi|
i

≤ 1

n
max

i=1,...,n∗
|xi|+ ε.

Then, the limsup of the LHS as n→∞ is at most 0 + ε. Since ε is arbitrary, the result follows.

Lemma EC.2 (Fabian (1974)). For a fixed triangular continuation region C defined by U(s) =

max{0,A−Bs} and −U(s) , if B = ∆/2 and ∆> 0, then

P[B∆(T)< 0] =
1

2
e−A∆,

where T = inf{s > 0,B∆(s) /∈C}, the random stopping time that B∆(·) first exits C.

EC.1.3. Sketch of the Proof of Lemma 2

The detailed proof of Lemma 2 follows exactly the same steps as in Kim et al. (2005), so we only

provide a sketch of the idea behind it.

Recall that D[0,1] is the Skorohod space of all right-continuous functions with left limits. Let Λ

be the set of strictly increasing functions λ mapping the domain [0,1] onto itself, such that both λ

and its inverse λ−1 are continuous. Then, the Skorohod metric ρ on D[0,1] can be defined by

ρ(X,Y) = inf
λ∈Λ

{
d : sup

t∈[0,1]

|λ(t)− t| ≤ d, and sup
t∈[0,1]

|X(t)−Y (λ(t))| ≤ d

}
.

Besides the definition of the Skorohod metric ρ, we also need to define the following two mapping

functions (as Definitions 2.1 and 2.2 in Kim et al. (2005)):

e-companion to Luo, Hong, Nelson and Wu: Sequential R&S Procedures using Parallel Computing ec7

Definition EC.1. On the Skorohod space D[0,1],

(a) For Y ∈ D[0,1], Let TY (U δ) = inf
{
t : |Y (t)| ≥U δ(t)

}
, and define the function pδ : Y ∈

D[0,1]→ pδ(Y)∈R by pδ(Y) = Y (TY (U δ)).

(b) For Y ∈D[0,1], Let TY (U) = inf {t : |Y (t)| ≥U(t)}, and define the function p : Y ∈D[0,1]→

p(Y)∈R by p(Y) = Y (TY (U)).

Notice that the forms of the upper boundaries U δ(t) and U(t) can be generally specified as in Kim

et al. (2005), however, for simplicity, we may directly regard U δ(t) =U δ
1j(t) and U(t) as defined in

Section 4.2.

To show that Z1j(T
δ
1j)⇒B∆(T1j) in Lemma 2, a key step is to show that pδ (Z1j(·))⇒ p (B∆(·)) as

δ→ 0, which involves the functional central limit theorem and the generalized continuous mapping

theorem (Theorem 3.4.4 in Whitt (2002)). The following proposition justifies that the conditions

of Theorem 3.4.4 in Whitt (2002) can be satisfied.

Proposition EC.1. If pδ(·) and p(·) are as in Definition EC.1, then

P[B∆ ∈Dp] = 0, (EC.12)

where Dp is the set of x∈D[0,1] such that pδ(xδ)→ p(x) fails for some sequence {xδ} with ρ(xδ, x)→

0 in D[0,1] as δ→ 0.

Proposition EC.1 presents the same result as Proposition 3.1 in Kim et al. (2005), and interested

readers may refer to the paper for the detailed proof.

Then with the results in Equation (1) and (EC.12), we can apply the generalized continuous-

mapping theorem (Theorem 3.4.4 in Whitt (2002)) to show that

pδ (Z1j (·))⇒ p (B∆(·)) , as δ→ 0,

which concludes the proof.

EC.2. Numerical Results of Test Experiments using Master/Slave

When the time to generate one observation is extremely small, then the master may not be able to

process available observations immediately after they are ready to be sent back to the master. We

conducted some numerical experiments on our local server to help better understand this issue.

Table EC.1 Summary under the SC settings when m= 48.

Number of alternatives k= 103 k= 104 k= 105

Total samples 1.881× 105 2.257× 106 2.710× 107

Makespan (seconds) 9.01 104.2 1320.6
PCS 0.99 0.99 1.00

ec8 e-companion to Luo, Hong, Nelson and Wu: Sequential R&S Procedures using Parallel Computing

We consider the SC with k= 103,104,105 and implement the APS procedure using Master/Slave

structure with m = 48 slaves. The replication time is simply the time for generating a normal

random variable (≈ 5× 10−3 ms). We report the numerical result in Table EC.1. Compared with

the result in Table 1 for the same k = 103 and m= 48, the samples simulated on the server (i.e.,

1.881× 105) is larger than that generated on the simulator (i.e., 1.792× 105). That is because the

replication time is relatively short on the server which leads to the situation that the master is not

fast enough to process all available samples immediately. Thus, the available observations are filling

the queueing buffer in front of the master, waiting for the comparison and elimination decisions.

This is consistent with the monitoring of the buffer in front of the master during the simulation.

Secondly, we find that the total sample size increases in proportion to the makespan as k increases.

However, most of the time is not devoted to simulation (i.e., generating samples) but consumed by

the master for computing work. For instance, it only takes about 0.02 (≈ 1.881×105× 5×10−6/48)

seconds to generate 1.881× 105 samples with m= 48 slaves, but the procedure spends about 9.01

seconds to select the best. This means 97.8% of the time the slaves are idling either for submitting

the result or waiting for the next task, which is very close to what we observe during the simulation

as shown in Figure EC.2.

Figure EC.2 captures a snapshot of the status of the threads for the Master/Slave structure after

starting the APS procedure with 48 slaves. From that figure, we find that all slaves (denoted as

slaves 0 to 47) are working in parallel to generate samples using only a small proportion of the

total time.

e-companion to Luo, Hong, Nelson and Wu: Sequential R&S Procedures using Parallel Computing ec9

Figure EC.2 A screenshot of the Master/Slave with the number of processors m= 48.

