News Shock, Firm Dynamics and Business Cycles: Evidence and Theory*

Haichao Fan‡ Xiang Gao‡ Juanyi Xu‡ Zhiwei Xu‡

This version: March 2016

Abstract

The literature of expectation-driven business cycles has overlooked the role played by endogenous entry. This paper documents empirically news shock as a major source of firm dynamics and comovement between firm entry and GDP using structural vector auto-regressions. We then develop a tractable dynamic stochastic general equilibrium model to study the propagation mechanism assuming fixed operating costs for incumbents and decreasing survival rates for entrants. Our quantitative prediction closely matches the positive comovement between firm entries and core economic indicators upon news shock. These results remain robust at the sectoral level when the baseline model is extended to a two-sector setup.

Keywords: Firm Dynamics, Endogenous Survival Rate, Expectation Driven Business Cycles, Sectoral Comovements

JEL Classification: E22; E32.

*This version has been substantially revised from the previous one. The earlier version is circulated under the title "Endogenous Firm Entry and Expectation Driven Business Cycle". We thank Pengfei Wang and Kang Shi for their insightful comments and discussions. We also thank Rajeev Dhawan for kindly providing us the index of CEO sentiment. We acknowledge the financial support from the Shanghai Pujiang Program (15PJ041; 12PJ048) and the NSFC (No.71403166; No.71501117).

‡School of International Business Administration, Shanghai University of Finance and Economics, Shanghai, China. Tel: +(86)21-65907037. Email: fan.haichao@mail.shufe.edu.cn

§School of International Business Administration, Shanghai University of Finance and Economics, Shanghai, China. Tel: +(86)21-65907206. Email: gao.xiang@mail.shufe.edu.cn

‡Department of Economics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong. Tel: +852-23587604. Email: jennyxu@ust.hk.

‡Corresponding author. Antai College of Economics and Management, Shanghai Jiao Tong University, Shanghai, China. Tel: (+86)21-52301587. Email: xuzhiwei@sjtu.edu.cn.
1 Introduction

The importance of endogenous firm entry in understanding aggregate fluctuations has been well documented in recent business-cycle literatures. For instance, Jaimovich and Floetotto (2008) show that variations in the number of operating firms lead to countercyclical markups which would amplify total factor productivity (TFP) shocks. Bergin and Corsetti (2008), Lewis (2009; 2013; 2015), and Berentsen and Waller (2015) all find that firm dynamics affect monetary policies through the extensive investment margin. Wang and Wen (2011) augment real business cycle (RBC) model with firm entry and exit, and argue that the technology shock could be the main driving force of the business cycle. Bilbiie et al. (2012) emphasize that many sluggish producers can generate a novel endogenous shock propagation mechanism in standard RBC models. Clementi and Palazzo (2013) study the role of firm entry and exit decisions in shaping greater persistence and unconditional variations of aggregate indicators. Turning to the expectation-driven business cycles (EDBCs) literature, the empirical studies (Beaudry and Portier, 2006; Beaudry and Lucke, 2010; Barsky and Sims, 2012; Schmitt-Grohe and Uribe, 2012; and many others) have overlooked endogenous entry, and only focused on the fact of news shock accounting for a large fraction of fluctuations in variables like GDP, aggregate consumption, and total labor supply. Whether firm dynamics could play a role in linking news shocks and business cycles remains an unanswered question. As a result, our paper aims to explain the extent to which news about future economic conditions can explain changes in firm entry, and, more importantly, to investigate whether there exists a strong correlation between firm entry and core economic outcomes in response to news shocks.

Intuitively, entrepreneurs have a tendency to start new businesses when optimistic economic outlook prevails. This strong causal relation between good news and firm entry is evident in Figure 1.1 Good news is measured by the good-news index, which is the difference between the numbers of good news versus bad news, sourced from the Michigan Surveys of Consumers. As can be seen, the rise of amount of good news coincides with a boom in firm entrance with a notably high correlation at 0.67 over business cycles. Similar patterns emerge when good news is proxied by the consumer or CEO sentiment index.2

1Firm entry is a net measure defined as the percentage change of the numbers of firms from the 1988-2012 County Business Patterns dataset.
2Barsky and Sims (2012) argue that public sentiments are more informative for recovering news shocks than recovering animal spirit shocks. We thus use two sentiment indices for different types of agents: demand side and supply side. The consumer sentiment index is taken from the Michigan Surveys of Consumers, while the
Figure 1. Good news, sentiments and net firm entry

Notes: The three proxies for good news are demeaned series and are all based on annual frequency. The left vertical axis scales news/sentiments, and the right vertical axis records net firm entry (0.01 represents 1%). The shaded bars denote the NBER-defined economic recession periods. For more details on data definition see Appendix A.

To further establish a rigorous relation between news shocks and firm entry responses, we resort to a three-variable vector auto-regression (VAR) system that contains good-news index, net firm entry, and real GDP. The results are consistent. A positive news shock raises net firm entry and real GDP simultaneously. The response curve of net firm entry has a visible hump, which peaks at the fourth quarter and gradually dampens afterwards. These dynamic patterns persist when the good-news index is replaced by either consumer sentiment or CEO sentiment measures. We utilize forecasting error variance decompositions (FEVDs) under various VAR settings and conclude that news shocks in the long run could at least account for 40% of the fluctuations in firm entries, and 60% of the fluctuations in real GDP. Moreover, augmenting the above benchmark VAR system by incorporating consumption, hours

CEO sentiment index is obtained from the Conference Board Survey.
worked and stock price variables, we show that firm entries positively comove with newly-added macroeconomic indicators. In robustness checks, we follow Beaudry and Lucke (2010) and Barsky and Sims (2011) to recover news on future productivity using two alternative identification schemes. The results confirm that news shocks drive fluctuations in firm entries and also generate comovements among aggregate indicators.

To explain the empirical facts, we then formulate a dynamic stochastic general equilibrium (DSGE) model, which assumes that entrant’s survival rate is endogenous and the incumbent firms need to pay a per-period fixed operating cost. The increasing return to scale of production induced by the fixed operating cost implies an upward-sloping labor demand curve, which in turn leads to comovements among consumption, labor, and output conditional on news shocks. However, these comovements do not necessarily guarantee a news-driven economic boom provided that the survival rate of new entrants is constant. This is because potential entrants may postpone their entrance into market until the piece of good news is realized. As a result, the firm mass might fall in the current period. The slowdown in firm entries ultimately causes an economic recession.

To deal with this recession trap, we introduce endogenous decreasing survival rate of entrants, i.e., new-comers’ survival possibility is inversely correlated with the number of entries. Such an assumption has been employed in DSGE models such as those developed by Lewis (2009) and Beaudry et al. (2011), and also has been supported by empirical works from the industrial organization literature. Consequently, an economic boom occurs after good news, as firm mass expands in the current period according to the following chains of reactions for both entrants and incumbents: an decreasing survival rate means that the chance of failure for startups raises when there is a large number of entries. Therefore, potential producers opt to enter the market in advance to avoid this entry congestion. As a result, the number of entrants tends to smooth over time. After the realization of the good news, the number of entrants is relatively small compared to the case of a constant survival rate. This would benefit the

3 According to Jaimovich and Floetotto (2008), fixed operating costs result in increasing returns to scale, and thus serve as an amplification factor for aggregate production.

4 The reduction of firm mass yields wage cuts because of a decline in labor demand. Lower income further reduces the aggregate consumption as well as the output, an economic recession thus takes place.

5 Among others, Mata and Portugal (1994) analyze Portuguese manufacturing data and conclude that new firm failures (the opposite to survival rate) are positively correlated with the intensity of entrance by manufacturers; Audretsch et al. (2000) draw a similar conclusion with entry data from the Netherlands; Hannan et al. (1995) use data from Belgium, France, Germany and Italy. They find that during the mature stage of an industry, the survival rate is negatively affected by the density of entries due to intensified competition effect.
incumbent firms by boosting up their asset prices (or firm values), since the competition pressure from new entrants is much smaller. Given the arrival of favorable news, the stock prices of existing firms will increase, attracting more entrepreneurs to enter market and ensuring an economic boom.

Therefore, in conjunction with fixed operating costs, an endogenous survival rate produces positive comovement in response to news shocks between firm entries and a series of macroeconomic indicators. With fairly general utility specifications (e.g., Greenwood–Hercowitz–Huffman and King–Plosser–Rebelo preferences), our quantitative model could generate comovement that replicates the empirical pattern documented in the VAR exercises.

Another important aspect towards fully understanding EDBCs is to look at cross-sector comovements. To do this, we modify our baseline DSGE model to incorporate two sectors. We show that the above-mentioned two key features, i.e., fixed operating cost and decreasing survival rate, are again essential elements to produce sectoral comovements between firm entries and a series of macroeconomic indicators. The only difference is that the desired comovement between firm entries and labor inputs at the sectoral level requires a specific form of preference—one that associates with small wealth effect on consumption and labor supply (Jaimovich and Rebelo, 2009).

Our paper contributes to a vibrant literature that attributes aggregate fluctuations to firm dynamics, including Jaimovich and Floetotto (2008), Bergin and Corsetti (2008), Lewis (2009; 2013), Wang and Wen (2011), Bilbiie et al. (2012), Clementi and Palazzo (2013), Berentsen and Waller (2015), and many others. Amongst these studies, our paper is most related to Lewis (2009) who introduces endogenous survival rate into standard business cycle models in order to obtain positive response of entries under expansionary monetary policy shocks. Like them, we also introduce endogenous survival rate, but our model diverges from their research in two regards. First, their emphasis is on the economy’s reactions to contemporaneous monetary shocks, our focus however lies on the impact of news about future TFP. Second, we investigate comovements both empirically and theoretically, while they focus on a modeling approach.

Our paper is also closely related to a growing literature on the EDBCs. Besides aforementioned empirical works on news shocks, there exists a vast of DSGE models aiming to account for comovements among core macroeconomic indicators responding to good news. To name a few, Beaudry and Portier (2004; 2007) study variants of the neoclassical growth model. They find that these models fail to generate a boom in response to good news about future TFP, but
adding complementarity between consumption and investment goods could solve this problem. Denhaan and Kaltenbrunner (2009) deem matching frictions as a mechanism to produce the EDBCs. Jaimovich and Rebelo (2009) introduce variable capacity utilization, investment adjustment cost, and a preference with low short-run labor-supply wealth effect into a standard RBC model. They prove that this enhanced model is able to generate more realistic aggregate and sectoral comovements. Wang (2012) reviews a set of models that can produce the EDBCs from a labor market perspective. Our contribution stands out unique in finding comovements between firm dynamics and macroeconomic indicators both at the aggregate and the sectoral level using two key specifications, i.e., fixed operating cost and decreasing survival rate. In specific, fixed operating cost per se guarantees the comovements among macroeconomic indicators, but it does not necessarily ensure an economic expansion (i.e., positive comovements) in response to good news. Our decreasing survival rate imposes a penalty on a sudden and sharp rise in firm entries, inducing potential entrants to act in advance upon favorable news. Hence, positive comovements are guaranteed. Last but not the least, this paper provides a systematic empirical analysis that encompasses a line of empirical research on news-driven firm dynamics.

The remainder of the paper is organized as follows. Section 2 conducts various structural VAR analyses to inspect firm entry dynamics in response to a news shock. Section 3 presents a baseline one-sector RBC model with endogenous firm entry to show how fixed operating costs and decreasing survival rate can reproduce the EDBCs. Section 4 extends the baseline model to a two-sector setup and tests the model’s capability to account for sectoral comovements. Section 5 concludes, followed by an Appendix that contains data description, alternative identification strategies, equilibrium characterization, and all proofs.

2 Empirical Evidences

In this section, we first describe databases that provide information on quarterly net firm entry series. We then present our empirical findings in a baseline structural VAR setting, where firm dynamics and macroeconomic indicators raise simultaneously conditional on good news. We

Other studies on this topic include Karnizova (2010), Gunn and Johri (2011), Auray et al. (2013), and etc.

Fan and Xu (2014) and Li and Meckari (2009) also discuss the similar issue. The former relies on the mechanism in Jaimovich and Rebelo (2009) to generate comovements between firm dynamics and macroeconomic indicators in one sector model. In our paper, the comovement among economic indicators is guaranteed by the fixed operating cost. The latter reveals that time-variant sunk entry cost and variable capital utilization together will create the EDBCs in a quantitative framework.
finally establish the robustness of our results by extending the baseline VAR system, exploring historical entry measures, and focusing on only TFP news shocks.

2.1 Data Description

The U.S. Bureau of Economic Analysis (BEA) reports series of net business formations which corresponds ideally to the net firm entry concept we purport to measure. But this series on a quarterly frequency stops updating after the last quarter of 1994 due to reprogramming data resources. A complementary source is the U.S. Bureau of Labor Statistics (BLS) who reports the net birth of establishments starting from 1993Q2 to recent years. One might suspect that the definition of "establishment" is conceptually different from that of "firm". We argue that the difference is small and the net birth of establishments is indeed a valid proxy for net firm entry. To back up our argument, fortunately, annual sequences of both numbers of establishments and firms are available from the U.S. census website (from 1988 to 2012). We compute their percentage changes separately. Figure 2 below shows that the net entry of establishments moves in strict accordance with the net entry of firms. The correlation between them is significantly high at 0.92, also indicating that the dynamics of establishments tracks the firm dynamics notably well. Therefore, we are confident to take the quarterly series of the net birth of establishments as a proxy of net firm entry in our baseline VAR analysis. Nevertheless, in robustness analysis we use the historical net firm formation series (1960Q1-1994Q4) and the results are unchanged.

Figure 2. Net entries of establishments and firms: annual series.
2.2 Findings of the Baseline Structural VAR System

To identify news shocks, we first follow Barsky and Sims’ (2012) identification approach to build a three-variable VAR system with the sequential order of good-news index, log real GDP and net firm entry.\(^8\) Note that all series are on the basis of quarterly frequency during the time span 1993Q2-2014Q4. To be specific, the good-news index is calculated as the difference of favorable versus unfavorable news heard on recent changes in business conditions; the net firm entry is proxied by the net birth of establishments (as percentage of total number of existing establishments).\(^9\) Appendix A provides more details about the construction procedure for these data series. The system includes four-period lags for each variable, and the results are fairly robust to different number of lag periods.\(^10\) A Cholesky decomposition is conducted on the covariance matrix of innovations. We identify the first orthogonal innovation as the news shock, which is the only source of fluctuations in good-news index in the impact period. The first row in Figure 3 presents the impulse responses to an increase of one-standard-error change in the good-news index: a positive news shock raises both output and net firm entry. To see the magnitude, if the favorable news shock is reflected by a 15 points increment in the good-news index, GDP and net firm entry would increase by around 0.25% and 0.05%, respectively. The immediate consequences of these effects are relatively low, but the follow-up consequences become significant over time. One interesting observation is that the response of net firm entry has a visible hump, peaking in the fourth quarter and dampening gradually afterwards.

Barsky and Sims (2012) find that the consumer sentiment is informative for recovering news shocks instead of animal spirit shocks. Following their argument, we consider two modified VAR models: one replaces the good-news index with the consumer sentiment taken from the Michigan Survey of Consumers, and another uses CEO sentiment from the Conference Board Survey as a proxy for the good-news index. The second and third rows in Figure 3 report the corresponding responses to a positive news shock in the two modified models. As can been seen, the responses of GDP and net firm entry resemble the responses in the original VAR models.

\(^8\) An alternative strategy (see Barsky and Sims, 2012) is to put the good-news index at the end of the sequence, and identify innovation in firm entries as news shocks. However, the pattern of impulse responses changes little with this alternative strategy. We thus do not report the results to save space.

\(^9\) Since for some time spots the good-news index values are negative, we do not take logarithm for this index when running the VAR estimation.

\(^10\) Additionally, we consider the potential cointegration between GDP and net firm entry. More specifically, we repeat the estimation using a vector error correction model with two cointegration vectors (i.e., one common trend). We then conduct the same Cholesky decomposition described in the text. The responses of output and net entry to news shocks exhibit very similar patterns to those in the baseline VAR exercises.
model with good-news index as the measure for news shocks.

Figure 3. Impulse responses to a positive news shock in the baseline VARs.

Notes: IRFs are from three-variable VARs. Each VAR system includes four-period lags. The shaded areas are one-standard-error confidence bands computed from bias-corrected bootstrap method with 2000 replications. Each period represents one quarter in a year, 0.01=1%. For the VAR systems using good-news index and consumer sentiment, the time span is from 1993Q2-2014Q2; for the VAR system using CEO sentiment, the time span is from 1993Q2-2011Q4 due to the availability of CEO sentiment index coverage.

It turns out that news shocks are the major source of fluctuations in both aggregate output and firm entry. Figure 4 reports the forecasting-error variance-decompositions (FEVDs) for VAR estimations using different measures for news shocks. When news shocks are measured by the good-news index (solid lines), news shocks in the long run can explain over 70% of the fluctuations in GDP and approximately 45% of the fluctuations in net firm entry. Alternatively if news shocks are measured by sentiment indices (dashed lines and dash-dot lines), the importance of news shocks in explaining aggregate fluctuations is moderately reduced, but they still account for a major part of output and entry fluctuations. Our findings are generally consistent with those documented by Barsky and Sims (2012).

8
2.3 Robustness: an Extended Structural VAR System

The baseline VAR exercises focus only on the positive comovement between net firm entry and aggregate output. To see how firm dynamics interact with other core macroeconomic indicators responding to a positive news shock, we extend the baseline model by incorporating consumption, hours worked, and stock price. See Appendix A for details about the construction of these newly-added time series. We depict in Figure 5 responses of all chosen indicators. GDP and net firm entry responses show similar patterns compared to those in the baseline exercise. Consumption, hours worked, and stock price all respond positively to favorable news, of which stock price displays a visible hump-shape response after good news’ impact, analogous to the response of net firm entry. In our modeling part, we will show that procyclical stock price upon news shocks is the crucial feature where our model differs from a RBC model with investment adjustment cost. As before, the big picture of impulse responses in Figure 5 stays almost unchanged when the good-news index is replaced by consumer or CEO sentiments.
Figure 5. Responses in an extended six-variable VAR system

Notes: IRFs are from a six-variable VAR. The VAR system includes four-period lags for each variable. The shaded areas are one-standard-error confidence bands computed from bias-corrected bootstrap method with 2000 replications. Each period represents one quarter in a year, 0.01=1%. The time span is from 1993Q2 to 2014Q2.

2.4 Robustness: Historical Net Business Formation

As discussed earlier, due to data availability, we employ the net birth of establishment as a proxy for endogenous entry. To check if our main results are robust to different measures of firm dynamics, we re-run the baseline VAR exercise using BEA’s historical series of the net business formation index. This series describes the net change of firm numbers from 1960Q1 to 1994Q4. Like Figure 3, Figure 6 plots responses of output and net firm entry to a positive news shock (measured separately by three different indicators). Once again, a similar pattern shown in Figure 3 occurs. In addition, we also perform the six-variable extended VAR analysis as that in Figure 5 and obtain similar results to those in the baseline VAR model. The FEVDs analysis is consistent with our conjecture that news shock is the primary driving force behind
business cycle fluctuations.\footnote{As for magnitude, in the six-variable VAR system with good-news index as the shock measure, news shock in the long run explains roughly 40\% of the fluctuations in GDP and 45\% in firm entry.}

Figure 6. Impulse responses of output and net firm entry: net business formation data (1960Q1-1994Q4)

Notes: IRFs are from three-variable VARs. Each VAR system includes four-period lags. The shaded areas are one-standard-error confidence bands computed from bias-corrected bootstrap method with 2000 replications. Each period represents one quarter in a year, 0.01=1\%. For the VAR systems using good-news index and consumer sentiment, the time span is from 1960Q1-1994Q4; for the VAR system using CEO sentiment, the time span is from 1976Q2-1994Q4 due to the availability of CEO sentiment index coverage.

2.5 Robustness: News on Future Productivity

It is natural to directly identify news shocks from indicators such as good-news index or sentiments. However, the news shocks that recovered from the baseline VAR analysis are general in the sense that it is not clear whether the identified news shocks are related to the fundamental of supply side or demand side. To document the response of firm entry to news about future productivity, we conduct two types of structural VAR exercises that are widely used in the
literature.12 Using only productivity news helps bring the empirical evidences more in line with the theoretical model in this paper.

The first type of VAR exercise is taken from Beaudry and Lucke (2010). We construct a four-variable system following the sequential order of TFP, good-news index, real GDP and net firm entry.13 We also replace the good-news index by either consumer or CEO sentiment. We first estimate a vector error correction model for the four-variable system with four-period lags and three cointegration vectors. The identification strategy for news shock is to choose news that do not have an effect on current TFP during the impact period, but may affect the contemporaneous good-news index and possibly future TFP. Figure 7 plots the responses to our identified positive news shocks. Favorable news about future TFP raises the aggregate output and induces more firms to enter the market.

The second type of VAR exercise follows Barsky and Sims (2011). Similar to the Beaudry-Lucke identification scheme, a four-period lagged-variable system with the sequential ordering of TFP, good-news index (or consumer/CEO sentiment), real GDP and net firm entry is estimated. This time, news shocks are identified as ones that do not impact the level of TFP, but maximize the share of the variance of TFP in a range of periods. Figure 8 reports the impulse responses to Barky-Sims type of positive news shocks. The dynamics of aggregate output and firm entries resemble their respective counterparties in the Beaudry-Lucke identification setup.

Finally, the FEVDs analyses in both identification schemes again confirm that news shocks (especially those TFP news shock identified explicitly) indeed drive a large of fluctuations in aggregate output and net firm entry.

12Appendix B provides more discussions regarding the identification and the subsequent econometric issues.
Figure 7. Impulse responses in Beaudry and Lucke (2010) identification scheme

Notes: The shaded areas are one-standard-error confidence bands computed from bias-corrected bootstrap method with 2000 replications. Each period represents one quarter in a year, 0.01=1%. For the VAR systems using good-news index and consumer sentiment, the time span is from 1993Q2-2014Q2; for the VAR system using CEO sentiment, the time span is from 1993Q2-2011Q4 due to the availability of CEO sentiment index coverage.
Figure 8. Impulse responses in Barsky and Sims (2011) identification scheme

Notes: The shaded areas are one-standard-error confidence bands computed from bias-corrected bootstrap method with 2000 replications. Each period represents one quarter, 0.01 = 1%. For the VAR systems using good-news index and consumer sentiment, the time span is from 1993Q2-2014Q2; for the VAR system using CEO sentiment, the time span is from 1993Q2-2011Q4 due to the availability of CEO sentiment index coverage.

3 One-Sector Model Economy

The empirics provide strong and robust evidence that news shocks account for the major part of firm entry variations and drive the positive comovement between firm entry and core macroeconomic indicators. These stylized facts imply two theoretical considerations. First, firm dynamics are largely influenced by public expectations of future economic conditions. Second, net firm entry, namely an extensive margin, may provide a crucial propagated channel in response to news shocks. In this section, we develop a tractable DSGE model to explore in this regard.
The economy is characterized by a continuum of firms and households. In a perfectly competitive market, two types of firms exist: incumbents and entrants. The incumbent firms produce homogeneous consumption goods, and the potential entrants must pay a fixed entry cost to enter the market. There is a success probability that new entrants would become an incumbent, and this endogenous probability will be defined in detail later. Thus, the mass of incumbent firms is endogenously determined by entries and exits of firms. The households are representative and fit in standard profiles: they consume final goods, supply homogenous labor hours to producers, and purchase firm equities as savings instruments.

3.1 Incumbent Firms

Here we describe the profit maximization problem faced by incumbents. Each incumbent firm produces \(y_t \) units of goods using labor input \(l_t \) according to a production function \(y_t = A_t l_t^{1-\alpha} \), where \(A_t \) denotes the aggregate technology.\(^{14}\) During the production process, firms not only pay workers’ wages but also spend \(\xi \) units of final goods to cover a per-period fixed operating cost. In real life, this operating cost may correspond to the cost of updating or maintaining equipment and the inevitable operating waste during manufacture. Therefore, the total profit in each period can be obtained by solving the following optimization problem:

\[
\max y_t - w_t l_t - \xi,
\]

\[\text{s.t. } y_t = A_t l_t^{1-\alpha},\]

where \(w_t \) represents the market wage rate. The optimal condition for labor input implies a labor demand of \(w_t = (1 - \alpha) \frac{\partial y_t}{\partial l_t} \). Each producing firm earns an operating profit of \(\pi_t = \alpha y_t - \xi \).

The representative household provides labor \(L_t \) to firms for their production activities. Therefore, the resource constraint in the labor market implies \(L_t = N_t l_t \), where \(N_t \) is the total mass of operating firms. The aggregate amount of final goods \(Y_t \) equals \(N_t y_t \). To sum up, the aggregate final output, the labor demand curve, and the representative firm’s operating profit are given by the following equations, respectively:

\(^{14}\)Incorporating physical capital into the production function complicates the dynamics in equilibrium. So we follow Bilbiie et al. (2012) and assume labor as the sole inputs for production. When capital is included, the model can still generate comovements among aggregate variables as long as investment adjustment cost is present.
\[Y_t = A_t N_t^{\alpha} L_t^{1-\alpha}, \]
\[w_t = (1 - \alpha) \frac{Y_t}{L_t}, \]
\[\pi_t = \alpha \frac{Y_t}{N_t} - \xi. \]

3.2 Potential Entrants

To enter the market, potential entrants have to pay a fixed cost, \(f_e \), denominated in final goods. We assume that after entry a startup will become a producing firm with an endogenous probability \(q_t \). In other words, \(1 - q_t \) denotes failure rate, which is referred as hazard rate in the industrial organization literature. This literature’s empirical evidences show that higher failure rate is associated with tougher market competition (Mata and Portugal, 1994; Hannan et al., 1995; Audretsch et al., 2000). Therefore, we follow this literature and assume that startups’ success probability or survival rate, \(q_t \), is a decreasing function of the entry density \(\frac{n_t}{N_{t-1}} \): \[q_t = q \left(\frac{n_t}{N_{t-1}} \right), \]

where the elasticity \(\frac{dq}{q} \) in the steady state ranges over \([-1, 0]\). The above specification is to some extent equivalent to the one given in Beaudry et al. (2011), which assume that a larger number of newborn firms will create more vacancies for new entrants. In their paper, the survival rate \(q_t \) takes the form of \(\eta_t \frac{N_{t-1}}{n_t} \), where \(\eta_t \) is concave in \(\frac{n_t}{N_{t-1}} \). \[\eta_t \frac{N_{t-1}}{n_t} \] indicates the number of vacancies available to new entrant firms. \[\text{where both } g' > 0 \text{ and } g' \frac{\eta_t}{\eta_t} \in [0, 1]. \]

The fact that \(g(.) \) is an increasing function indicates that a larger number of newborn firms will create more vacancies for new entrants. This assumption is equivalent to our previous condition \(\frac{\eta_t}{\eta_t} \in [-1, 0] \). The specification in Beaudry et al. (2011) implies that this elasticity equals \(-1\) if the shock \(\eta_t \) is constant. \[\min \{1, \frac{n_t N_{t-1}}{n_t} \} \text{. However, they only discuss the case when } n_t \geq \eta_t N_{t-1}. \]

\[\text{15} \quad \text{Alternatively, assuming } q_t \text{ decreasing with the number of entries } n_t \text{ instead of the entry rate } \frac{\eta_t}{\eta_t} \text{ does not change our main results.} \]

\[\text{16} \quad \text{To be specific, } \eta_t \text{ is a concave function of the entry rate: } g \left(\frac{n_t}{N_{t-1}} \right), \text{ where both } g' > 0 \text{ and } \frac{\eta_t}{\eta_t} \in [0, 1]. \text{ The assumption is equivalent to our previous condition } \frac{\eta_t}{\eta_t} \in [-1, 0]. \text{ The specification in } \text{Beaudry et al. (2011)} \text{ implies that this elasticity equals } -1 \text{ if the shock } \eta_t \text{ is constant.} \]

\[\text{17} \quad \text{Beaudry et al. (2011) assume that the probability for a startup to become a functioning firm is given by } \min \{1, \frac{n_t N_{t-1}}{n_t} \}. \text{ However, they only discuss the case when } n_t \geq \eta_t N_{t-1}. \]
Therefore, the number of operating firms evolves according to the following rule:

\[N_t = (1 - \delta) N_{t-1} + q_t n_t. \] \hspace{1cm} (5)

Note that the decreasing survival rate imposes a penalty on the entrants when there is a sharp increase of number of startups. As a result, to seize a good business opportunity and to avoid competing with others, a rational firm has an incentive to enter the market in advance, not after the realization of a news shock.

Finally, the free entry condition implies that potential entrants will enter the market as long as the expected value of production is greater than the cost of entry. Thus, in equilibrium we must have

\[f_e = q_t V_t, \] \hspace{1cm} (6)

where \(V_t \) denotes the discounted cash flows for incumbents, i.e., the present value of all expected profits or the stock price of an incumbent firm. The above equation tells us that, as \(1/q_t \) is increasing in the number of entrants \(n_t \), \(n_t \) is positively correlated with the firm value \(V_t \). Consequently, more firms will enter this competitive market if their expected value is high enough. This idea is consistent with the impulse responses reported in our structural VAR exercises in the previous section (see Figure 5).

Recall the aggregate production function (1), one may think of the number of firms \(N_t \) as the capital stock in a traditional Cobb-Douglas specification, and think of the number of entry firms \(n_t \) as capital investment. This makes our specification for success probability \(q_t \) look analogous to the investment adjustment cost (IAC). That being said, there are two differences between the endogenous survival rate \(q_t \) and the IAC. First, they generate different implications on stock price dynamics. In our model the free entry condition (6) implies procyclical stock price; while in a standard EDBCs model with IAC (e.g., Jaimovich and Rebelo, 2009), the stock price is countercyclical because good news about future productivity reduce the value of capital stock.\(^{19}\) Since our VAR analysis documents a procyclical stock price (see Figure 5), the prediction from the model with IAC turns out to be at odds with the U.S. data. Second, the determination and evolution rules for the number of entry firms \(n_t \) and capital investment

\(^{18}\)The time-to-build assumption does not affect our model’s dynamics except for its effect on the dynamics of the total mass \(N_t \) in the impact period.

\(^{19}\)The firm value consists of two components: the value of firm capital stock and the value of firm investments. As shown in Jaimovich and Rebelo (2009), good news about future technology reduce the former component but raise the latter component. Setting calibration parameter at usual values, Jaimovich and Rebelo (2009) show that the negative effect dominates the positive one, implying a counter-cyclical stock price.
are different. In our model, the number of entry firms \(n_t \) is determined by market-clearing conditions in equilibrium, and the endogenous survival rate \(q_t \) affects each firm’s entry decision through the externality of congestion. While in the model with IAC (e.g., Jaimovich and Rebelo, 2009), the capital investment is chosen internally by firms, and the IAC influences each firm’s investment decision through dynamic complementarity—the investment made currently becomes firm’s capital stock tomorrow.

3.3 Households and the General Equilibrium

The economy is inhabited by a continuum of identical households with the mass normalized to one. The representative household has preferences over labor \(L_t \) and a random sequence of consumption \(C_t \). In each period, the household maximizes the following lifetime utility function:

\[
E_0 \sum_{t=0}^{\infty} \beta^t U(C_t, L_t),
\]

where \(U(C, L) \) is a twice continuously differentiable and quasi-concave function with \(U_C > 0, U_L < 0, -\frac{U_{CC}}{U_C} > -\frac{U_{LC}}{U_L}, \) and \(\frac{U_{LL}}{U_L} > \frac{U_{CL}}{U_C} \).²⁰ The representative household chooses the optimal bundle of consumption, labor supply, and incumbent firms’ stock share \((s_t) \) by maximizing (7) subject to the following sequence of budget constraints:

\[
C_t + N_tVs_t \leq w_tL_t + N_t\pi_ts_t + (1 - \delta)N_{t-1}Vs_{t-1}, \tag{8}
\]

where \(V_t, s_t, \) and \(\pi_t \) are stock price, quantity of shares, and firm profit, respectively. In the equilibrium, the budget constraint implies that

\[
C_t + I_t = Y_t, \tag{9}
\]

where the aggregate investment \(I_t \) equals to \(n_tf_e + N_t\xi \). The first-order conditions in a symmetric equilibrium with respect to consumption, labor and asset price are given by

\[
\Lambda_t = U_C(C_t, L_t), \tag{10}
\]

\[
\Lambda_tw_t = U_L(C_t, L_t), \tag{11}
\]

\[
V_t = \pi_t + \beta(1 - \delta)E_t \frac{\Lambda_{t+1}}{\Lambda_t} V_{t+1}, \tag{12}
\]

where \(\Lambda_t \) is the Lagrangian multiplier associated with equation (8).

²⁰The last two inequalities we impose on the utility function imply that both consumption and leisure are normal goods.
The general equilibrium is defined as follows. Given the process of the exogenous shock A_t, the equilibrium is characterized by a collection of nine equations listed in Appendix C such that: (i) household choose their optimal consumptions, labor supplies, and equity shares; (ii) firms maximize their operating profits; (iii) and both the goods and labor markets clear.

4 One-Sector Model Quantitative Implications

In this section, we first analyze the crucial role played by fixed operating costs and decreasing survival rates in generating EDBCs or positive comovements among aggregate variables. We then report quantitatively responses of aggregate indicators to a news shock under various specifications of preferences.

4.1 Fixed Operating Costs and Decreasing Survival Rates

To examine the capability of our one-sector model to produce EDBCs, the following proposition states that the fixed operating cost ξ ensures the economy exhibiting comovements among output, consumption, investment, labor input, wage, firm entry, and number of operating firms. Let \hat{x} be the percentage deviation in x from its steady state. We follow the strategy in Beaudry and Portier (2007) to prove: $\frac{\partial \hat{C}_t}{\partial \hat{N}_t} > 0$, $\frac{\partial \hat{L}_t}{\partial \hat{N}_t} > 0$, $\frac{\partial \hat{Y}_t}{\partial \hat{N}_t} > 0$, $\frac{\partial \hat{I}_t}{\partial \hat{N}_t} > 0$, $\frac{\partial \hat{w}_t}{\partial \hat{N}_t} > 0$, and $\frac{\partial \hat{n}_t}{\partial \hat{N}_t} > 0$.

Proposition 1 A sufficiently large fixed operating cost ξ guarantees comovements among output, consumption, investment, labor input, wage, firm entry and number of operating firms in response to good news about future TFP.

Proof: See Appendix D.

As shown in Wang (2012), the reason that standard RBC models fail to obtain news-driven comovements can be explained from a labor market perspective. In RBC models, a positive future TFP shock increases prospective income, and therefore, induces forward-looking households to raise their current consumptions.\(^{21}\) This income effect may increase households’ leisure time or, equivalently, reduce their labor supply. As a result, the equilibrium labor level decreases, causing the output to fall as well. Positive news about the future TFP results in output and consumption to move in opposite directions.\(^{21}\)

\(^{21}\)Since future shocks would not materialize at present, consumers’ reactions to news are all reflected in autonomous changes in current consumption demand. For this reason, a model that can generate EDBCs upon demand shocks would be able to produce TFP based EDBCs as well.
Our strategy to resolve this issue is to alter the labor demand curve from downward-sloping to upward-sloping. This is why we assume a positive per-period fixed operating cost—it generates increasing return to scale for aggregate variables. More specifically, a one-unit increase in factor inputs can cause net output to increase by more than one. Hence, a sufficiently large operating cost would derive an upward-sloping labor demand curve, implying a parallel comovement between consumption and labor.22 In addition, a large fixed operating cost also ensures a positive comovement between the number of firms and labor because a favorable news shock increases the aggregate consumption and attracts more entrants to enter market, which creates extra demands for labor in production. Given the definition $I_t = n_t f_e + N_t \xi$, the investment comoves with the number of firms as well.

Results in Proposition 1 therefore apply. Appendix D compares dynamics in scenarios with and without fixed operating costs. Clearly, the absence of fixed operating cost is responsible for divergent comovements among economic indicators.

Although fixed operating cost leads to comovement, the cost per se cannot ensure positive comovements among the aggregate variables in response to news shocks. Good news about future technology might cause a recession instead of a boom because more advanced technology in the future indicates that producing today is relatively less profitable (see Figure A3 in Appendix D). In particular, when there is a constant survival rate for entrants, potential firms have strong incentives to enter the market until the good news is realized. If this happens, the total number of incumbents in the current period decreases, market wage then falls with a decline in labor demand, next the total household consumption reduces, and eventually an economic recession occurs.

Our strategy to producing positive comovements is to introduce decreasing survival rate q_t.23 Once introduced, the number of entrants smooths over time because q_t imposes a penalty on sharp movement. Appendix D compares business cycle responses in the model with decreasing survival rates and those in the model with constant survival rates. In comparison, we find that the number of entrants (n_t) increases relatively less in the decreasing-survival-rate case when good news realize (see Figure A3 and A4 in Appendix D). Fewer entrants further benefits the incumbents as the competition pressure from potential entrants is reduced. Thus,

22 An increase in \hat{C}_t shifts the labor supply curve up and the labor demand curve down simultaneously. So the new equilibrium level of labor input \hat{L}_t will increase.

23 When fixed entry cost is smaller compared to the output level, introducing habit formation into the model can also produce positive comovements among aggregate variables. The reason is that the habit formation smooths consumption, causing consumption to grow immediately after the arrival of good news.
potential entrants would value the production opportunity more due to higher expected value. Anticipating this, more firms enter when good news are heard at the present period and an economic expansion is attained.24

4.2 Dynamics of Economic Indicators in One-Sector Model

We now discuss quantitatively the dynamics of the main aggregate variables in EDBCs. We consider two types of preferences: the separable King-Plosser-Rebelo (KPR) preferences, \(U(C_t, L_t) = \frac{C_t^{1-\eta}}{1-\eta} - a_t \frac{L_t^{1+\gamma}}{1+\gamma} \), and Greenwood-Hercowitz-Huffman (GHH) preferences, \(U(C_t, L_t) = \frac{1}{1-\eta} \left(\frac{C_t}{a_t} \right)^{1+\gamma} \). In the above two utility specifications, \(\eta \) is set to 1, implying a natural logarithm functional form; \(\gamma \) is the inverse of the Frisch elasticity of the labor supply to the wage, which is set to 0.3; and \(a_t > 0 \) is set such that the steady-state labor input is at 0.33. The other common deep parameters are calibrated as follows.

\begin{table}[h]
\centering
\caption{Calibrated parameters in benchmark model}
\begin{tabular}{lll}
\hline
Parameter & Value & Description \\
\hline
\(\beta \) & 0.985 & Subjective discount factor \\
\(\alpha \) & 0.36 & Capital share in production \\
\(\eta \) & 1 & Parameter in utility function \\
\(\gamma \) & 0.30 & Inverse of the Frisch elasticity of labor supply \\
\(\delta \) & 0.025 & Exogenous firm exit rate \\
f_e & 1 & Entry cost \\
q & 0.975 & Steady-state survival rate of startups \\
\hline
\end{tabular}
\end{table}

The time unit corresponds to one quarter. The discount factor \(\beta \) is calibrated at 0.985, which implies a steady-state annual real interest rate of 6%. The share of capital \(\alpha \) is set to 0.36, as commonly used in the literature. The natural death rate of firms, \(\delta \), is set to be 0.025, leading to a 10% annual rate of exogenous exits in our model. This specification is consistent with the empirical finding that the annual job destruction rate in the U.S. is approximately at the level of 10%. The steady state \(q \left(\frac{\gamma}{\delta} \right) \) is set to equal \(1 - \delta \), so new entrants have a \(1 - \delta \) probability to survive in the steady state. Since the value of the entry cost \(f_e \) does not affect aggregate dynamics, we set it to 1 to simplify calculation. Regarding the process of news shocks, we conform with Jaimovich and Rebelo (2009) and assume that the economy is at the steady state initially and there is an announcement that the technology will increase 1% permanently in the fifth period.

24The argument in Proposition 1 applies if news are about future demand shocks. The impulse responses show that the aggregate comovements present after the demand news hits the economy.
The fixed operating cost, \(\xi \), and the elasticity of survival probability with respect to entry rate, \(\frac{q_0}{q} \), are crucial for the dynamics. We set \(\xi \) to equal to 1.5, which implies that total consumption accounts for roughly 65\% of the final output in the steady state.\(^{25}\) The elasticity parameter \(\frac{q_0}{q} \) is set to \(-0.1\).\(^{26}\) This negative number is useful to generate an immediate increase in firm entries upon good news. The impulse responses in Figure 7 summarize the consequences with the above calibrations. The economy exhibits the EDBCs we expect after hit by good news about the future TFP. Moreover, the number of entrants peaks at the fifth period (i.e., when this piece of news is realized) and then gradually declines, replicating a visible hump observed in VAR analysis. In Appendix D, we show that the decreasing survival rate is crucial to produce the positive impacts. By now, we have shown that our model is able to explain the empirics found in the VAR exercises. In the empirics, we consider net firm entry, \(q_t n_t - \delta N_{t-1} \). Figure 7 reports the response of new entrants, \(n_t \), which sightly differs from the empirical investigation. The impulse response of net firm entry is smoother than that of new entrants, but the pattern is of no significant difference.

Next, we continue to validate the results by robustness checks. What we did is to employ a two dimensional diagram to outline the feasible set for a range of values of \(\frac{q_0}{q} \) and \(\xi \), under which our model can produce comovements among the aggregate variables. Without loss of generality, we only consider GHH preferences. The results stay unchanged for the case of KPR preferences. The shaded area in Figure 8 indicates the set of desirable values.\(^{27}\) If we take a closer look at Figure 8, the feasible set covers a large area of the plane, i.e., \(\frac{q_0}{q} < -0.03 \) and \(\xi > 1 \).\(^{28}\)

\(^{25}\)This choice of \(\xi \) value satisfies the inequality conditions presented in the proof of Proposition 1.

\(^{26}\)In a monetary DSGE model, Lewis and Stevens (2015) estimate the elasticity parameter, which provides empirical support for our calibrated value.

\(^{27}\)We hold other parameters unchanged while assigning different values for elasticity \(\frac{q_0}{q} \) and fixed cost \(\xi \). These two parameters of interest are adjusted simultaneously to determine the extents to which impulse responses exhibit a pattern of comovement.

\(^{28}\)Different values of \(\xi \) barely change steady-state ratios. The consumption-output ratios when \(\xi \in (1, 10) \) are centered around 65\%, close to the average level observed in U.S. data.
Figure 7. Responses to the news about future technology

Notes: The figure shows percentage responses to news shocks about future TFP. The horizontal axes indicate quarters.

Figure 8. Feasible values of parameters $\frac{q'n/N}{q}$ and ξ

Notes: This figure plots the feasible combinations of parameter values of $\{q'/qn/N, \xi\}$. The preference is of the GHH form. The shadow area indicates values of $\{q'/qn/N, \xi\}$ such that the responses of aggregate economic variables in the initial period are all positive.
5 Two-sector Extension Model

The sectoral comovements among output, labor input, and investment are as critical as aggregate-level results for understanding business cycles.\(^{29}\) Christiano and Fitzgerald (1998) find that a two-sector version of the neoclassical TFP driven model cannot generate sectoral comovement between the investment and labor input. Huffman and Wynne (1999) provide empirical evidences for sectoral comovements in response to contemporaneous shocks and propose a corresponding model that explains their findings. However, their model is incapable of producing comovements in response to a news shock, as their model allows no compensation for the negative wealth effect on labor supply. Jaimovich and Rebelo (2009) unify contemporaneous and news shocks and develop a sector-comovement consistent model. However, the model predicts countercyclical stock prices.

In this section, we extend our benchmark model to incorporate both the consumption goods sector and the investment goods sector. This extended model could generate aggregate and sectoral comovements. Like Jaimovich and Rebelo (2009), our model is unified in terms of its power to generate aggregate and sectoral comovements with both contemporaneous and news technology shocks.\(^{30}\) Unlike them, our model can generate procyclical asset prices as well.

In respect to the demand side, households’ preferences remain unmodified and satisfy (7).

Turning to the production side, potential entrants in both sectors need to pay \(f_e\) units of fixed entry cost in term of investment goods. Production in both sectors now incurs a fixed operating cost denominated in investment goods. The production function in either sector is thus given by

\[
X_t = A_t z_{X,t} N_{X,t}^{\alpha} L_{X,t}^{1-\alpha}, \quad X \in \{C, I\},
\]

where \(A_t\) is a neutral aggregate TFP and \(z_{X,t}\) is a sector-specific technology for sector \(X\). The labor demand equation in either sector is of the form

\[
w_t = (1-\alpha) \frac{P_{X,t} X_t}{L_{X,t}}, \quad X \in \{C, I\},
\]

where \(P_{C,t} = 1\) and \(P_{I,t}\) is the relative price of investment goods to consumption goods. For each sector, \(N_{X,t}\) evolves according to

\[
N_{X,t} = (1-\delta) N_{X,t-1} + q \left(\frac{n_{X,t}}{N_{X,t-1}} \right) n_{X,t}, \quad X \in \{C, I\},
\]

\(^{29}\)Through measuring sector-specific technical changes, Basu et al. (2013) emphasize the importance of investigating fluctuations from the lens of a multi-sector model.

\(^{30}\)The impulse responses to contemporaneous technology shocks are available upon request.
The total number of operating firms \(N_t \) and new entrants \(n_t \) are defined as follows:

\[
N_t = N_{C,t} + N_{I,t}, \quad (16)
\]

\[
n_t = n_{C,t} + n_{I,t}. \quad (17)
\]

In addition, the two sectors’ respective operating profits and expected firm value are given by

\[
\pi_{X,t} = \alpha \frac{P_{X,t}X_t}{N_{X,t}} - P_{I,t} \xi, \quad (18)
\]

\[
V_{X,t} = \pi_{X,t} + (1 - \delta)E_t \frac{A_{t+1}}{A_t} V_{X,t+1}, \quad X \in \{C, I\}, \quad (19)
\]

The free entry conditions for each sector are given by

\[
P_{I,t} f_e = q(\frac{n_{X,t}}{N_{X,t-1}}) V_{X,t}, \quad X \in \{C, I\}. \quad (20)
\]

Finally, the market clearing conditions imply the following equalities:

\[
I_t = (N_{I,t} + N_{C,t}) \xi + (n_{I,t} + n_{C,t}) f_e, \quad (21)
\]

\[
L_t = L_{C,t} + L_{I,t}, \quad (22)
\]

\[
Y_t = C_t + P_{I,t} I_t. \quad (23)
\]

Given the processes of a neutral TFP shock \(A_t \) and two sector-specific shocks \(z_{C,t} \) and \(z_{I,t} \), the equilibrium is jointly characterized by all production-related equations in this section, as well as the three households’ equations (10), (11) and (12).

5.1 Dynamics of Economic Indicators in Two-Sector Model

The proposition below justifies the presence of operating costs and decreasing survival rate \(q(\) as vital factors to generate aggregate and sectoral comovements upon a news shock in our two-sector economy. The figures below plot impulse responses due to news concerning three technological shocks: a neutral TFP shock, a consumption-specific technology shock, and an investment-specific technology shock.

Proposition 2 The existence of a sufficiently large operating cost \(\xi \) provides a channel to generate both aggregate and sectoral comovements among output, consumption, investment, labor input, firm entry and number of operating firms in response to a news shock. To guarantee
sectoral comovements between sectoral labor inputs, one needs to impose an extra set of restrictions on parameter values for the purpose of restraining wealth’s effects on consumption and labor supply.

Proof: See Appendix E.

Essentially, Proposition 2 emphasizes the key role of a sufficiently large ξ in generating aggregate and sectoral comovements. However, with general forms of utility, a sufficiently large operating cost cannot guarantee labor input comovements at the sectoral level. To figure out the constraint needed to overcome this undesirable outcome, we express the labor input in the consumption goods sector as (see Appendix E)

$$\hat{L}_{C,t} = \hat{N}_{C,t} - \left(\frac{\gamma_{le} - \gamma_{cc}}{\alpha}\right) \hat{C}_t - \left(\frac{\gamma_{ll} - \gamma_{cl}}{\alpha}\right) \hat{L}_t,$$

where the last two terms $(\gamma_{le} - \gamma_{cc}) \hat{C}_t + (\gamma_{ll} - \gamma_{cl}) \hat{L}_t$ reflect the wealth effects on consumption and labor supply. To attain our goal of $L_{C,t}$ positively comoving with $N_{C,t}$ and other sectoral variables, a small wealth effect is required; that is, the coefficients $\gamma_{le} - \gamma_{cc}$ and $\gamma_{ll} - \gamma_{cl}$ cannot be too large. Consider the GHH preference scenario, the above equation is reduced to

$$\hat{L}_{C,t} = \hat{N}_{C,t} - \frac{\gamma}{\alpha} \hat{L}_t.$$

(25)

Good news about future TFP lead to an increase in $\hat{L}_{C,t}$ as long as the inverse substitute elasticity γ is small enough. Alternatively, consider the KPR case, we have

$$\hat{L}_{C,t} = \hat{N}_{C,t} - \frac{\eta}{\alpha} \hat{C}_t - \frac{\gamma}{\alpha} \hat{L}_t.$$

(26)

Compared to the GHH case, there is an additional term, $\frac{\eta}{\alpha} \hat{C}_t$, which means that under KPR preferences the wealth effects are stronger. Hence, $\hat{L}_{C,t}$ will increase only if η and γ are sufficiently small.\(^{31}\)

Next we calibrate the two-sector model. For GHH preferences, we use the same parameter values in the one-sector model, γ is set to 0.3.\(^{32}\) For KPR preferences, generating desired comovements requires small η and γ, so we set γ to 0.3 and η to 0.1. Figure 9 presents impulse responses to three different types technological news shocks under GHH preferences.\(^{33}\)

\(^{31}\)Adding habit formation into preferences would reduce the wealth effect. The model’s performance can be improved, as the feasible range of values of η and γ would be enlarged.

\(^{32}\)As the parameter η does not matter for the dynamics under GHH preferences, we set it to 1.

\(^{33}\)As before, the assumption is that the economy is in steady state at period 0 and a positive news shock arrives at period 1. Still, each shock is defined as a permanent one-percent increase at period 5.
It can be read in the figure that the model generates both aggregate and sectoral comovements responding to various types of news. Numerical investigation indicates that, leaving other parameters unchanged, the range of γ that can guarantee aggregate and sectoral comovements lies within $[0, 0.35]$. Figure 10 is constructed in the same way as Figure 9 except for the utility is of KPR form, and the feasible range for of η is $[0, 0.15]$ when γ is fixed at 0.3. Lastly, we need to mention that numbers of entrants in both sectors display visible humps, resembling previous patterns.

![Figure 9. Responses to news shocks in two-sector model: GHH preference](image-url)

Notes: This figure shows percentage responses to news shocks about different technology shocks. The horizontal axes indicate quarters.
Figure 10. Responses to news shocks in two-sector model: KPR preference

Notes: This figure shows percentage responses to news shocks about different technology shocks. The horizontal axes indicate quarters.

6 Conclusion

This paper explores both empirically and theoretically linkages between firm dynamics and aggregate fluctuations in EDBCs. By means of VAR analysis, we find that news shocks are of great significance for understanding interactions among core macroeconomic indicators and firm entry. In order to explain the empirics, we build a DSGE model, in which we show that non-zero operating costs of incumbents and decreasing survival rates of entrants are two key ingredients in producing positive comovements in aggregate variables. On the one hand, the fixed operating costs introduce a degree of increasing returns to scale that derives an upward-sloping labor demand curve, guaranteeing comovements among output, consumption, labor input, investment, wage, firm entry and incumbent firm mass as well as asset prices in EDBCs. However, these comovements do not necessarily ensure a boom in response to good news. On the other hand, the decreasing survival rates impose a penalty on sharp increase in firm entries, inducing potential entrants to enter the market immediately when favorable news arrive. Consequently, the aggregate economy, including asset prices and firm entries,
experiences a boom in response to favorable news about future TFP. Finally, we extend the baseline model economy to a two-sector version, and show that the above two specifications are also crucial to produce sectoral comovements.

References

Appendix

A Data Descriptions

This Appendix presents detailed sources and treatments of data series employed in the paper.

Annual Data Series:

1. **Numbers of firms.** This series records the annual total number of firms from 1988 to 2012. Data source: 1988-2012 County Business Patterns, downloadable from www.census.org.

2. **Numbers of establishments.** This series records the annual total number of establishments from 1988 to 2012. Data source: 1988-2012 County Business Patterns, downloadable from www.census.org.

Quarterly Data Series in Baseline VARs:
Since different data sources have different length of coverage, to be consistent, for most series we choose the period from 1993Q2 to 2014Q2.

1. **Net birth of establishments.** This series records the growth rate of numbers of establishment in quarterly frequency. As for construction method, we first compute the level of net birth of establishments, which is the difference between the birth and the death of establishments. All the series are downloadable from the website of U.S. Bureau of Labor Statistics. We then take the total number of establishment in 1992 as an initial value and compute the quarterly numbers of establishments by accumulating the net birth in each quarter. The net birth of establishments is the growth rate of total numbers of establishments.

2. **Good-news index.** This series is calculated as the difference of the index of favorable news and the index of unfavorable news. The indices of favorable and unfavorable news are published by Michigan Surveys of Consumers.

3. **Consumer sentiment index.** This series is sourced from Michigan Surveys of Consumers.

4. **CEO sentiment index.** This series records the business executive confidence index from the Conference Board. It describes executives’ expectations for the U.S. economy six months ahead. Units are in percentage. The time span is from 1993Q2-2011Q4.

5. **Real GDP.** This series is the U.S. real Gross Domestic Product in chained 2009 dollars. Data source: St. Louis FED economic database.

Quarterly Data Series in Robustness Analysis:
1. **Real consumption.** This series is the U.S. real personal expenditures in nondurable goods and services. Data source: U.S. Bureau of Economic Analysis.

2. **Hours worked.** This series is the U.S. hours of all persons in non-farm business sector. The value in 2009 normalized to 100. Data source: St. Louis FED economic database.

4. **Net business formation.** This series records the net business incorporations. It is reported by the U.S. Bureau of Economic Analysis. The series is discontinued and ends at 1994Q4 due to reprogramming of resources at BEA. The time span is from 1960Q1-1994Q4.

5. **Total factor productivity.** The TFP series is adjusted by the capital utilization from Fernald (2012). Data source: http://www.frbsf.org/economic-research/indicators-data/total-factor-productivity-tfp/.
B Econometric Issues for Alternative Identification Schemes

B.1 Beaudry and Lucke (2010) Identification Scheme

The econometric model we use is a four-variable structural vector error correction model (SVECM). The vector system includes TFP, good-new index (News), real GDP (Y) and new business formation (NF). As in Beaudry and Lucke (2010), we consider an environment where a 4-dimensional vector of X_t, ordered sequentially as $[\text{TFP}; \text{News}; Y; \text{NF}]$, is integrated of order one, and can be represented as a vector autoregressive (VAR) process of order $p < \infty$. Allowing for $r_0 < 4$ cointegration vectors, the error-correction representation of the process X_t takes the form of

$$\Delta X_t = ab'X_{t-1} + \sum_{j=1}^{p-1} \Gamma_j \Delta X_{t-j} + u_t,$$ \hspace{1cm} (B.1)

where a and b are $4 \times r_0$ matrices of loading coefficients and cointegrating vectors, respectively; the $\{\Gamma_j\}_j^{p-1}$ are 4×4 coefficient matrices; and u_t are the non-orthogonal error terms. Our exercise aims to identify a vector of orthogonal/structural shocks, ε_t, satisfying $u_t = B\varepsilon_t$ where B is a non-singular impact matrix. In particular, we assume that the ordering in the vector ε_t is: TFP shock, news shock about TFP, and two short-run shocks. By applying the Granger representation theorem, process (B.1) can be expressed as

$$X_t = X_0 + \sum_{j=1}^{\infty} \Xi_j B\varepsilon_{t-j} + L \sum_{j=1}^{t-1} \varepsilon_j + B\varepsilon_t,$$ \hspace{1cm} (B.2)

where X_0 is a vector of initial conditions, the matrices $\{\Xi_j\}_j^{\infty}$ are absolutely additive ($\lim_{j \to \infty} \Xi_j = 0$), L is the long-run multiplier matrix of the structural shocks ε_t, and B is the corresponding short-run impact matrix. To jointly identify matrices L and B, six restrictions on their elements are required.

Next we discuss the procedure of identifying news shocks. First of all, we range the order of structural shocks: the first is surprise technology shock, the second is news shock about TFP, the last two shocks are short-run shocks (e.g., demand shocks). Specifically, we assume the surprise shock is the only one that has contemporaneous effects on TFP. The news shock, as in Beaudry and Lucke (2009), has no impact on today’s TFP but may affect today’s good-news index. This assumption implies the (1,2) element in impact matrix is zero. Besides, the news shock has the ability to predict the TFP in long-run, thus the (1,2) element in long-run matrix is not necessary zero. The last two shocks are assumed to be independent with the exogenous TFP process and thus have no long-run effects on TFP. We force the (1,3) and (1,4) elements in both impact matrix and long-run matrix to take the value of zero. The above restrictions are good enough to identify the news shock.\footnote{The ADF test shows that all of four series are $I(1)$ processes.} In sum, the impact matrix B and the long-run

\footnote{To fully identify all structural shocks, we still need one additional restriction to distinguish between two short-run shocks. Since this restriction does not change the dynamics of news shock, we simply force the (3,4) element in the impact matrix to be zero.}
matrix L take the explicit form of

$$B = \begin{bmatrix}
* & 0 & 0 & 0 \\
* & * & * & * \\
* & * & * & 0 \\
* & * & * & *
\end{bmatrix}, \quad L = \begin{bmatrix}
* & * & 0 & 0 \\
* & * & * & * \\
* & * & * & * \\
* & * & * & *
\end{bmatrix}. \quad (B.3)$$

We then estimate the system through SVECM. We use three criteria to determine the appropriate lag length. In particular, the Akaike Information Criterion and the Final Prediction Error Criterion suggest four-period lags, that is, $p = 3$ in the representation (B.1); while the Schwarz Criterion suggests three-period lags. Therefore, we estimate the system with four-period lags in. Three-period lags are used for robustness check, where the main results in our paper are virtually unchanged.

At last, we turn to the cointegration properties. The Johansen trace test significantly rejects one cointegration relationships ($r_0 = 1$) at the 5-percent level, and marginally rejects two cointegration relationships ($r_0 = 2$) at the 5-percent level. Since in our SVECM there is only one explicit trend which is the trend of the TFP series, a natural assumption on cointegration rank is three, i.e., rejecting one cointegration relationships in the Johansen test. Taking this into account, as in Beaudry and Portier (2006), we conservatively choose three cointegration relationships instead of two. Moreover, our results are robust to the value of the cointegration rank.

For systems where the good-news index is replaced by the consumer or CEO sentiment, we conduct the same identification scheme and estimation procedure as above. The results are presented in Section 2.

B.2 Barsky and Sims (2011) Identification Scheme

The econometric model we use is a four-variable VAR system with the same variables and orders as in Appendix B.1. Let $X_t = [\text{TFP}, \text{News}, Y, \text{NF}]$. Analogous to (B.1), the process of X_t can be expressed in the form of

$$X_t = \sum_{j=1}^{p} \Psi_j X_{t-j} + BD\varepsilon_t, \quad (B.4)$$

where B is an arbitrary orthogonal matrix that satisfies $BB' = I$, D is the impact matrix, ε_t is a vector of orthogonal shocks. Following Barsky and Sims (2011), we aim to identify news shocks as innovations that maximize the sum of contributions to TFP’s (the first variable in X_t) forecast error variance (FEV) over a finite horizon. Let $\Omega_{i,j}(\tau)$ be the share of τ-period-ahead FEV of the i-th variable in X_t explained by the j-th innovation. We label the second innovation as the new shock. The news shock can be identified by solving the following
maximization problem\footnote{To conserve space, we do not define the maximization problem explicitly. Readers should refer to Barsky and Sims (2011), where they provide detailed mathematical descriptions.}
\[
D_2 = \arg \max \sum_{\tau=0}^{k} \Omega_{1,2}(\tau),
\]
subject to constraints (i) $B(1, j) = 0$, for $\forall j > 1$; (ii) $D_2(1, 1) = 0$, (iii) $D'_2D_2 = 1$.

We next turn to the estimation issue. Following Barsky and Sims (2011), we estimate the four-variable VAR in levels with four-period lags. Our results are quite robust to different numbers of lags. As three of four series contain unit roots, there may exist cointegration relationships. We thus estimate the system through VECM, and only to find that the responses of X_t to news shocks present similar patterns to those in the VAR model in levels.

Again, for systems where the good-news index is replaced by the consumer or CEO sentiment, we conduct the same identification scheme and estimation procedure as above. The results are presented in Section 2.
C Summary of Full System in the One-Sector Model

1. Consumption:
\[U_C(C_t, L_t) = \Lambda_t. \] (C.1)

2. Intratemporal optimally:
\[U_L(C_t, L_t) = \Lambda_t w_t. \] (C.2)

3. Resource constraint:
\[C_t + n_t f_e + N_t \xi = Y_t. \] (C.3)

4. Number of operating firms:
\[N_t = (1 - \delta) N_{t-1} + q(n_t/N_{t-1})n_t. \] (C.4)

5. Aggregate output:
\[Y_t = A_t N_t^\alpha L_t^{1-\alpha}. \] (C.5)

6. Profit:
\[\pi_t = \alpha \frac{Y_t}{N_t} - \xi. \] (C.6)

7. Real wage:
\[w_t = (1 - \alpha) \frac{Y_t}{L_t}. \] (C.7)

8. Free entry condition:
\[f_e = q(n_t/N_{t-1})V_t. \] (C.8)

9. Value for incumbent firm:
\[V_t = \pi_t + \beta(1 - \delta)E_t \frac{\Lambda_{t+1}}{\Lambda_t} V_{t+1}. \] (C.9)
Proof of Proposition 1

To demonstrate the role of fixed operating cost, we set the elasticity of $q(.)$ to zero, i.e., the survival rate of entrants is fixed. For simplicity, we assume that news about technology will be realized in the next period, which implies that the percentage change in predetermined variables at the current period t and jump variables at the previous period $t-1$ is zero. Log-linearizing marginal utilities of labor and consumption yields

$$U_L = \gamma_{lc} \hat{C}_t + \gamma_{ll} \hat{L}_t, \quad U_C = \gamma_{cc} \hat{C}_t + \gamma_{cl} \hat{L}_t,$$

where $\gamma_{lc} = \frac{U_{lc}}{U_L}, \gamma_{ll} = \frac{U_{ll}}{U_L}, \gamma_{cc} = \frac{U_{cc}}{U_C}, \gamma_{cl} = \frac{U_{cl}}{U_C}$. The assumption that consumption and leisure are normal goods implies $\gamma_{lc} - \gamma_{cc} \geq 0$ and $\gamma_{ll} - \gamma_{cl} \geq 0$. The formal proof includes three steps.

Step 1: Prove that the existence of fixed operating cost ξ implies $\frac{\partial \hat{C}_t}{\partial \hat{N}_t} > 0$. According to the optimal labor and consumption equations, we have the labor supply

$$\hat{w}_t = (\gamma_{lc} - \gamma_{cc}) \hat{C}_t + (\gamma_{ll} - \gamma_{cl}) \hat{L}_t. \quad (D.2)$$

Labor demand (2), together with the production function (1), imply

$$\hat{w}_t = \alpha \hat{N}_t - \alpha \hat{L}_t. \quad (D.3)$$

Substituting (D.3) into (D.2) yields

$$\hat{L}_t = \frac{\alpha}{\gamma_{ll} - \gamma_{cl} + \alpha} \hat{N}_t - \frac{\gamma_{lc} - \gamma_{cc}}{\gamma_{ll} - \gamma_{cl} + \alpha} \hat{C}_t. \quad (D.4)$$

The resource constraint implies

$$\frac{C}{Y} \hat{C}_t + \frac{N}{Y} \frac{\delta}{1 - \delta} f_e \hat{N}_t + \frac{N}{Y} \xi \hat{N}_t = \alpha \hat{N}_t + (1 - \alpha) \hat{L}_t. \quad (D.5)$$

The law of motion of the number of incumbents, \hat{N}_t, implies

$$\hat{n}_t = \frac{\hat{N}_t - (1 - \delta) \hat{N}_{t-1}}{\delta}. \quad (D.6)$$

Combining (D.4), (D.5), and (D.6) yields

$$\frac{C}{Y} \hat{C}_t + \left[\frac{N}{Y} \left(\frac{1}{1 - \delta} f_e + \xi \right) - \alpha \frac{\gamma_{ll} - \gamma_{cl} + 1}{\gamma_{ll} - \gamma_{cl} + \alpha} \right] \hat{N}_t - \frac{N}{Y} f_e \hat{N}_{t-1} = - (1 - \alpha) \frac{\gamma_{lc} - \gamma_{cc}}{\gamma_{ll} - \gamma_{cl} + \alpha} \hat{C}_t. \quad (D.7)$$

Plugging the steady-state ratio $\frac{N}{Y} = \frac{\alpha}{[1 - \beta(1 - \delta)] \frac{f_e}{1 - \delta} + \xi}$ into the last equation and set $\hat{N}_{t-1} = 0$, we obtain

$$\left[\frac{\alpha \frac{f_e}{1 - \delta} + \alpha}{[1 - \beta(1 - \delta)] \frac{f_e}{1 - \delta} + 1} - \alpha \frac{\gamma_{ll} - \gamma_{cl} + 1}{\gamma_{ll} - \gamma_{cl} + \alpha} \right] \hat{N}_t = - \left(\frac{C}{Y} + (1 - \alpha) \frac{\gamma_{lc} - \gamma_{cc}}{\gamma_{ll} - \gamma_{cl} + \alpha} \right) \hat{C}_t, \quad (D.8)$$

38
Note that the coefficient of \hat{C}_t is negative, thus $\frac{\partial \hat{C}_t}{\partial N_t} > 0$ if and only if the coefficient of \check{N}_t is less than zero. In the case where $\xi = 0$ or $f_\varepsilon/\xi = \infty$, the coefficient of \check{N}_t equals $\frac{\alpha}{1-\beta(1-\delta)} - \alpha \frac{\gamma u - \gamma a + 1}{\gamma a - \gamma a + \alpha}$, which is larger than zero in our calibration because $\alpha \frac{\gamma u - \gamma a + 1}{\gamma a - \gamma a + \alpha}$ belongs to the range of $(\alpha, 1)$. In the case where $\xi = \infty$ or $f_\varepsilon/\xi = 0$, the coefficient of \check{N}_t equals $\alpha - \alpha \frac{\gamma u - \gamma a + 1}{\gamma a - \gamma a + \alpha}$, which is less than zero. As $\frac{\alpha}{1-\beta(1-\delta)} \left(\frac{f_\varepsilon/\xi}{1-\delta} + 1 \right)$ is increasing in f_ε/ξ, the coefficient of \check{N}_t is less than zero if and only if the fixed operating cost ξ satisfies the following condition:

$$\xi > \frac{1 - \frac{\gamma u - \gamma a + 1}{\gamma a - \gamma a + \alpha} \left[1 - \beta (1 - \delta) \right]}{1 - \delta}.$$

(Hence, equation (D.8) implies that $\frac{\partial \hat{C}_t}{\partial N_t} > 0$ if the fixed operating cost ξ is large enough.)

Figure A1. Illustration for labor market dynamics

Step 2: Prove $\frac{\partial \hat{L}_t}{\partial N_t} > 0$. The labor demand (D.3) and the resource constraint (D.5) when combined together imply the following labor demand equation:

$$\hat{w}_t = \alpha \frac{1 - \frac{\alpha f_\varepsilon/\xi + \alpha}{1-\beta(1-\delta)} \frac{f_\varepsilon/\xi + 1}{f_\varepsilon/\xi} + 1}{\frac{\alpha f_\varepsilon/\xi + \alpha}{1-\beta(1-\delta)} \frac{f_\varepsilon/\xi + 1}{f_\varepsilon/\xi} + 1 - \alpha} \hat{L}_t - \alpha \frac{C}{Y} \hat{C}_t.$$

(Under condition (D.9), the coefficient before \hat{L}_t is larger than the coefficient before \check{L}_t in (D.2), indicating that the labor demand curve is steeper than the labor supply. Figure A1 provides a graphical illustration. In particular, the solid lines represent the labor demand and...
supply curves before \(C_t \) is changed; the dashed lines represent these two curves after \(C_t \) is changed. It can be seen from the graph that, as \(C_t \) increases, the labor demand curve shifts downward and the labor supply curve shifts upward. As a result, \(L_t \) increases, i.e., \(\frac{\partial L_t}{\partial C_t} > 0 \).

Therefore, given the proof in step 1, we have \(\frac{\partial L_t}{\partial N_t} > 0 \).

Step 3: Prove all other variables comove with the number of operating firms \(N_t \). The definition of investment straightly implies \(\frac{\partial I_t}{\partial N_t} > 0 \). The evolution of \(N_t \) implies \(\frac{\partial n_t}{\partial N_t} > 0 \) jointly imply that \(\frac{\partial L_t}{\partial N_t} > 0 \). Finally, the production function (1) associated with \(\frac{\partial L_t}{\partial N_t} > 0 \) imply \(\frac{\partial Y_t}{\partial N_t} > 0 \).

From Step 1 to 3, we have shown that output, consumption, investment, labor input, wage, firm entry, and number of operating firms comove if and only if condition (D.9) is satisfied. By now we have finished proving Proposition 1.

To give a quantitative illustration, Figure A2-A4 plot the impulse responses of all aggregate variables in Proposition 1 in response to positive news about future technology. The calibrated parameters are set according to Table 1. To be consistent with the proof, we assume that the news will be realized in the next period, i.e., period 2. To be more specific, Figure A2 shows that when the fixed cost \(\xi = 0 \), the model fails to generate the comovements in the Proposition 1. Figure A3 shows that as long as the fixed cost is sufficiently large, the comovements can be generated. Figure A4 further shows that the endogenous survival rate guarantees the increasing of firm number \(N_t \) corresponding to good news, and thus we obtain positive comovements.

Figure A2. Responses to news: constant survival rate and zero fixed cost
Figure A3. Responses to news: constant survival rate and non-zero fixed cost

Figure A4. Responses to news: decreasing survival rate and non-zero fixed cost

Notes: This figure shows percentage responses to news shocks about different technology. The horizontal axes denote quarters. The piece of news is realized in period 2.
E Proof of Proposition 2

Similar to the proof of Proposition 1, we again assume that news shocks concerning technology will be realized in the next period and set the elasticity of $q(.)$ at zero. The proof procedure contains four steps.

Step 1: Prove that, under a news shock, the price of the investment goods $\hat{P}_{I,t} = 0$. According to the free entry conditions, firm values deflated by $P_{I,t}$, namely $\frac{V_{C,t}}{P_{I,t}}$ and $\frac{V_{I,t}}{P_{I,t}}$ are constant. Furthermore, the asset-pricing formulas in (19) associated with the definition of profits in both sectors (18) imply the following relationship

$$\frac{C_t}{N_{C,t}} = \frac{P_{I,t} I_t}{N_{I,t}}. \quad (E.1)$$

In addition, the labor demand functions (14) gives us the following equality

$$\frac{C_t}{L_{C,t}} = \frac{P_{I,t} I_t}{L_{I,t}}. \quad (E.2)$$

The above two equations directly yield

$$N_{C,t}/L_{C,t} = N_{I,t}/L_{I,t}. \quad (E.3)$$

Combining two sectoral production functions (13), we further have

$$P_{I,t} = \frac{C_t L_{I,t}}{I_t L_{C,t}} = \frac{z_{C,t}}{z_{I,t}} \left(\frac{N_{C,t}/L_{C,t}}{N_{I,t}/L_{I,t}} \right)^{\alpha} = \frac{z_{C,t}}{z_{I,t}}, \quad (E.4)$$

which implies that $\hat{P}_{I,t} = 0$ since the consumption sector specific technology $z_{C,t}$ and the investment sector specific technology $z_{I,t}$ will not change at time t.

Step 2: Show that the aggregate variables comove with the number of operating firms N_t, i.e., $\frac{\partial \hat{C}_t}{\partial N_t}, \frac{\partial \hat{I}_t}{\partial N_t}, \frac{\partial \hat{L}_t}{\partial N_t}, \frac{\partial \hat{Y}_t}{\partial N_t}, \frac{\partial \hat{n}_t}{\partial N_t} > 0$. To simplify notation, we assume that sector-specific parameters share the same values as in the one-sector case. This assumption implies that the steady-state values of the aggregate variables in the two-sector model are the same as in the one-sector case. In addition, as we have already shown that the percentage change of the investment good price is zero ($\hat{P}_{I,t} = 0$) in response to a news shock, we can obtain the same log-linearized equations for aggregate variables as those in the one-sector case. More specifically, we have

1. Law of motion of N_t :

$$\dot{N}_t = (1 - \delta) \hat{N}_{t-1} + \delta \hat{n}_t. \quad (E.5)$$

2. Definition of investment:

$$\dot{I}_t = \frac{N_{C,t}}{I_t} \hat{N}_t + \frac{n_{C,t}}{I_t} \hat{n}_t. \quad (E.6)$$

3. Aggregate output:

$$\dot{Y}_t = \frac{C_t}{Y} \hat{C}_t + \frac{P_{I,t} I_t}{Y} \dot{I}_t. \quad (E.7)$$
4. Labor demand:

\[\dot{w}_t = \alpha \dot{N}_t - \alpha \dot{L}_t. \]

(E.8)

The households' problem remains unchanged. Thus, according to the proof of Propositions 1, we can easily show that with non-zero operating cost \(\xi_C = \xi_I = \xi \) that satisfies condition (D.9), the partial derivatives \(\frac{\partial c_i}{\partial n_i}, \frac{\partial l_i}{\partial n_i}, \frac{\partial y_i}{\partial n_i}, \frac{\partial \nu_i}{\partial n_i} \) are all greater than zero.

Step 3: Prove \(\frac{\partial N_{C,t}}{\partial N_t} > 0, \frac{\partial N_{I,t}}{\partial N_t} > 0, \frac{\partial h_{C,t}}{\partial n_t} > 0, \frac{\partial h_{I,t}}{\partial n_t} > 0, \frac{\partial I_{C,t}}{\partial n_t} > 0, \frac{\partial I_{I,t}}{\partial n_t} > 0, \frac{\dot{N}_{C,t}}{\partial N_t} > 0. \)

Equation (E.3) implies

\[\dot{N}_{C,t} - \dot{L}_{C,t} = \dot{N}_{I,t} - \dot{L}_{I,t}. \]

The market clearing condition for the investment goods (21), together with the investment goods production equation (13), yield

\[\alpha \dot{N}_{I,t} + (1 - \alpha) \dot{L}_{I,t} = \frac{1 + \frac{1}{\delta} \frac{L}{C}}{1 + \frac{1}{\delta} \frac{L}{C}} \dot{N}_t. \]

(E.9)

The definitions for total labor and the total mass of firm yield

\[\dot{L}_t = \frac{L_C}{L} \dot{L}_{C,t} + \frac{L_I}{L} \dot{L}_{I,t}, \]

(E.10)

\[\dot{N}_t = \frac{N_C}{N} \dot{N}_{C,t} + \frac{N_I}{N} \dot{N}_{I,t}. \]

(E.11)

According to the above four equations, we can solve for the sectoral variables

\[\dot{N}_{C,t} = \left[1 - \frac{N_l}{N_C} \left(\frac{L_e}{\delta} + 1 - \frac{1 - \alpha}{\delta} \right) \right] \dot{N}_t + \frac{N_l}{N_C} (1 - \alpha) \dot{L}_t, \]

(E.12)

\[\dot{L}_{I,t} = \left(\frac{L_e}{\delta} + 1 - \frac{1 - \alpha}{\delta} \right) \dot{N}_t + \frac{L_e}{\delta} \dot{L}_t, \]

(E.13)

\[\dot{N}_{I,t} = \dot{L}_{I,t} + \dot{N}_t - \dot{L}_t, \]

(E.14)

\[\dot{L}_{C,t} = \dot{N}_{C,t} - \dot{N}_t + \dot{L}_t. \]

(E.15)

Under condition (D.9), the coefficient before \(\dot{N}_t, 1 - \frac{N_l}{N_C} \left(\frac{L_e}{\delta} + 1 - \frac{1 - \alpha}{\delta} \right), \) in equation (E.12) is strictly positive if \(\beta \to 1. \) Given that the coefficient of \(\dot{L}_t \) is larger than zero and \(\frac{\partial L_{I,t}}{\partial N_t} > 0, \) \(\dot{N}_{C,t} \) comoves with \(\dot{N}_t. \) Condition (D.9) also ensures that the coefficient before \(\dot{N}_t, \left(\frac{L_e}{\delta} + 1 - \frac{1 - \alpha}{\delta} \right), \)

in equation (E.13) is larger than zero. Hence, we have \(\frac{\partial L_{I,t}}{\partial N_t} > 0. \) The equation (E.15) and the labor supply (D.2) jointly imply \(\frac{\partial N_{I,t}}{\partial N_t} = \frac{\partial L_{I,t}}{\partial N_t} + \frac{1}{\alpha} \frac{\partial \nu_i}{\partial N_t} > 0, \) which derives \(\frac{\partial N_{I,t}}{\partial N_t} > 0. \) Furthermore, the laws of motion for the number of incumbent firms imply \(\frac{\partial \nu_i}{\partial N_t} > 0 \) and \(\frac{\partial \nu_i}{\partial N_t} > 0. \) According to the definitions of \(I_{C,t} \) and \(I_{I,t}, \) we have \(\frac{\partial I_{C,t}}{\partial N_t} > 0 \) and \(\frac{\partial I_{I,t}}{\partial N_t} > 0 \) since \(\frac{\partial \nu_i}{\partial N_t} > 0, \frac{\partial \nu_i}{\partial N_t} > 0, \frac{\partial \nu_i}{\partial N_t} > 0, \frac{\partial \nu_i}{\partial N_t} > 0. \)
Step 4: Prove $\frac{\partial L_{C,t}}{\partial N_t} > 0$. The labor supply equation (D.2) and equation (D.3), together with equation (E.15), imply

$$
\dot{L}_{C,t} = \dot{N}_{C,t} - \left(\frac{\gamma_{lc} - \gamma_{cc}}{\alpha} \right) \dot{C}_t - \left(\frac{\gamma_{ll} - \gamma_{cl}}{\alpha} \right) \dot{L}_t.
$$

(E.16)

The coefficients of \dot{C}_t and \dot{L}_t measure the wealth effect of labor supply and consumption, respectively. Therefore, in order to make $\dot{L}_{C,t}$ comove with $\dot{N}_{C,t}$ and \dot{N}_t, we need $\gamma_{lc} - \gamma_{cc}$ and $\gamma_{ll} - \gamma_{cl}$ to be sufficiently small. That is, the utility function must have the characteristic that can derive a weak wealth effect.