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Maximizing the Sharpe Ratio: A Genetic Programming Approach

Abstract

While common machine learning algorithms focus on minimizing the mean-square errors of model

fit, we show that genetic programming, GP, is well-suited to maximize an economic objective, the

Sharpe ratio of the usual spread portfolio in the cross-section of expected stock returns. In contrast

to popular regression-based learning tools and the neural network, GP can double their performance

in the US, and outperform them internationally. We find that, while the economic objective plays

a role, GP captures nonlinearity in comparison with methods like the Lasso, and it requires smaller

sample size than the neural network.

JEL Classification: G12, G14, G15
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“One general law, leading to the advancement of all organic beings, namely, multiply, vary, let

the strongest live and the weakest die.”

– Darwin, C., On the origin of species, 1859.

1. Introduction

Machine learning (ML) revolutionizes the research in all sciences, with its presence almost

everywhere today. In finance, its applications at present appear concentrated in estimating the

cross-section expected stock returns, perhaps because explaining why different assets have different

returns is one of the central questions of finance. For examples, Chinco, Clark-Joseph, and Ye (2019)

apply LASSO to analyze cross-firm return predictability at the one-minute horizon. Kozak, Nagel

and Santosh (2020) provide a Bayesian LASSO approach to shrink factor dimensionality. Feng,

Giglio, and Xiu (2020) focus on choosing factors. Gu, Kelly and Xiu (2020) apply a comprehensive

set of ML tools, including generalized linear models, dimension reduction, boosted regression trees,

random forests, and neural networks, to forecast individual stocks and their aggregates. Freyberger,

Neuhierl, and Weber (2020) find nonlinear effects in the cross section of expected stock returns. Han,

He, Rapach, and Zhou (2020) develop a new C-LASSO approach to handle a comprehensive set of

firm characteristics. Filippou, Taylor, Rapach, and Zhou (2020) apply LASSO and neural network

to predict foreign exchanges, and Guo, Lin, Wu, and Zhou (2019) conduct a machine learning study

on corporate bonds. While all of these studies are different in their economic motivations, their

solutions are based on the objective functions of the machine learning literature.

A natural questions is whether we can apply or extend existing learning tools to maximize di-

rectly our economic objective function at hand. In particular, while different data sets or different

methodologies are employed, existing studies, such as Lewellen (2015), Green, Hand, and Zhang

(2017), and Freyberger, Neuhierl, and Weber (2020), all assess the economic significance by examin-

ing the performance of the well known spread portfolio, which longs assets in the highest estimated

expected return group, and shorts those assets in the lowest. Because the GP is constructed to

directly maximize the Sharpe ratio, it is likely to produce a portfolio with a higher Sharpe ratio

than methods that minimize mean-squared errors.

In this paper, we show empirically that it is indeed the case with the use of the generic pro-
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gramming (GP). While standard machine learning tools, such LASSO and neural network used in

recent cross-section studies, are not readily to be adapted to maximize the Sharpe ratio directly,

GP is known, at least as early as Neely, Weller and Dittmar (1997), and Allen and Karjalainen

(1999) in the finance literature, as a flexible optimization method in setting the objective function.

However, this flexibility or the GP in general have not receive much attention in the past, due to

perhaps its extremely heavy burden in computations, explained further later. In comparison with

existing GP studies, we optimize the Sharpe ratio of an investment portfolio in the cross-section

context. In fact, our paper appears the first to use the GP to maximize the Sharpe ratio, and

the first to apply it for forecasting returns in the cross-section.1 Moreover, following Zhang and

Bhattacharyya (2004) and Bhowan, Johnston, Zhang and Yao (2012), we incorporate new advances

into the GP, allowing for multiple sets of parameters in training samples and an ensemble method

in selecting the ultimately mapping function.

With 15 firm characteristics that capture size, momentum and price trends over different time

horizons, we find that the GP outperforms not only the leading regression-based machine learning

methods, the ridge, LASSO, elastic net (Enet), PCR, and PLS, but also the powerful neural network

models (NN1-NN5 with one to 5 layers) of Gu, Kelly, and Xiu (2020). In the out-of-sample period

from 1991 to 2019, the GP yields the greatest average return of 1.71% per month, while the

second greatest return, earned by NN2, is only 1.22%. As for the Sharpe ratio, GP has the largest

annualized Sharpe ratio, 1.32. In contrast, the linear models produce a Sharpe ratio level of only

about 0.70 (almost 50% lower) and the neural networks produce a level around 0.95 (almost 30%

lower).

The largest differences occur during the post-2003 subperiod. Green, Hand, and Zhang (2017),

noting a number of changes in firm reporting practice and government regulations, find that 2003

is a major structural break point in predicting the cross-section stock returns with firm character-

istics. Their results are replicated with our data. Indeed, all the regression-based machine learning

methods fail to generate significant average returns in their spread portfolios, though one of the

five neural network models manages to get a significant average return of 0.53 per month with a

t-stat of 2.19. In contrast, the GP obtains an average return of 0.72% per month with a t-stat of

1Assume knowing the true parameter, then there is certain equivalence between finding the stochastic discount
factor and maximizing the Sharpe ratio. Kozak, Nagel and Santosh (2020) and Bryzgalova, Pelger and Zhu (2020)
are the studies of the former based on firm characteristics.
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3.06. Its Sharpe ratio is 0.77, still about 30% greater than any of the other strategies. In short, the

GP really makes an important economic difference when it is used to maximize the Sharpe ratio of

the spread portfolio.

What is the relation between the GP spread portfolio and other spread portfolios? We regress

the expected stock return generated by GP on those generated by others in a cross-section regres-

sion, and then examine the decile portfolio sorted by the resulting residuals. Controlling for other

models, GP persistently yields highly significant spread return. In contrast, controlling for GP, the

spread return of other models shrinks almost to zero, indicating that GP contains substantially

more information than other models by subsuming their predictability.

To understand the time-varying outperformance, we construct an idiosyncratic volatility (IVOL)

index, defined as the cross-section average of the IVOL of individual stocks, to reflect the market

information uncertainty. We find that the improvement of GP over other models is mainly attribut-

ed to its good performance during the high-IVOL periods. Since noise-to-signal ratio in the stock

market is pretty high, the GP model which excels in extracting signals in market condition with

high information uncertainty level is expected to generate more powerful predictability.

We also examine the relation of the GP with various well known factor models in the literature.

Following Fama and French (1993), we construct a GP factor, GPF, based on a standard 2×3 double

sorting of size and the expected return generated by GP. All these machine learning methods easily

produce largely unexplained alphas of about 0.90% with significant t-statistic over 3, assuming

the existing factor models. However, the GPF alone can explain all the other spread portfolios,

the average absolute alpha is only up to 0.11% with a negligible t-statistic of 0.43. Moreover, the

p-value of the Gibbons, Ross, and Shanken (1989) (GRS) test for the GPF to price these spread

portfolios is 0.88, while the p-values for other factor models are less than 10−4. Moreover, adding

the GPF to existing factor models improves significantly the Sharpe ratios, implying that it can

serve as an additional factor based on the Sharpe ratio test of Barillas and Shanken (2017).

The performance of the GP is robust in a number of ways. First, once we replace the 15 firm

characteristics by the 15 used by Lewellen (2015), which are primarily fundamental variables, the

superior performance remains. In fact, the GP performs even better relative to existing methods,

with Sharpe ratio almost more than doubling those of others. Second, GP also performs well

internationally in the other G7 countries. Its spread portfolio is economically and statistically
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significant across the 6 markets, and its Sharpe ratio is always the greatest, consistent with the US

results.

Thirdly, the GP is also robust to alternative setups of two parameters that determine its search

for the maximum. Denote Pop as the individual number in each generation of the GP algorithm,

and Gen as the maximum number of the generations. As they characterize the searching depth,

it is obvious that the in-sample performance increases in either of <Gen, Pop>. Indeed, even

if the average Sharpe ratio for randomly generated individuals in the first generation is close to

0, the Sharpe ratio shows a strong increasing pattern as the generation increases. This evolution

path suggests that GP indeed “learns” from the data and attempts to optimize the Sharpe ratio.

However, increases in Pop is marginal compared with that of Gen. Moreover, we find that Gen also

controls the volatility and convergence of the algorithm. Intuitively, simulated individuals in the

earlier stage are more diversified, but as Gen increases, the new individual will evolve in the same

direction guided by the objective. Hence, while achieving higher Sharpe ratios, they also become

less-diversified and less volatile. Although the optimal <Gen, Pop> are chosen via validation, we

examine a number of alternative parameters and find the results are robust.

To see the importance of setting an objective to maximize the Sharpe ratio, we provide an

analysis of an alternative use of the GP algorithm with minimizing the conventional mean squared

error (MSE) as the objective. The results show that our previous GP substantially outperforms

this MSE-based GP by yielding a spread portfolio with higher return and Sharpe ratio, and by

subsuming its predictability.

To understand what conditions that drive the performance of the GP, we conduct two types of

econometric analysis. First, we simulate data from a linear model. In this case, the GP performs

similarly with other models because if the data are truly linear, learning from minimizing the MSE

should learn perfectly on the data, and so the the Sharpe ratio objective makes little difference. In

the second case, we simulate the data from a nonlinear model. In this case, as expected, the GP

substantially outperforms the linear regression-type models with much higher Sharpe ratios. While

the neural network models should capture the nonlinearity, we find that they require relative larger

sample size to perform well, explaining why they performs worse than GP in the real data sets.

Our paper adds to the small literature on the applications of GP into finance. Neely, Weller

and Dittmar (1997) seems of the earliest studies in finance, who apply the GP to find profitable
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technical rules. Allen and Karjalainen (1999) apply the GP to find profitable trading rules to

beat the S&P 500 index, but unsuccessfully. Recently, Brogaard and Zareei (2018), with modified

algorithms, are able to identify stronger time-series predictability of the S&P 500 index. Ready

(2002) also use GP to investigate the profitability of the technical trading rules on DJIA index. In

addition, Dempster and Jones (2001) and Dunis, Laws, Middleton, and Karathanasopoulos (2015)

apply it to currency and commodities. All these existing studies are about using the GP for time

series prediction. In contrast, our paper is about cross section prediction. As mentioned earlier, the

hurdle of applying the GP is computational time, which is especially critical in our cross section

context which deals with thousands of stocks. Indeed, even on a server with an Intel Xeon E7-8890

and 512 GB memory, the computation time takes days for our study. Nevertheless, with increasing

computing power each year, the application of the GP in finance will surely increase drastically over

time, simply due to the flexibility of the algorithm that it can be used to maximize any economic

objective.2

The rest of the paper is organized as follows. Section 2 discusses the data and the methodology

of our GP model and other competing machine learning models. Section 3 presents the main results.

Section 4 examines the robustness. Section 5 explores the explanation for GP’s good performance.

Section 6 concludes.

2. Data and methodology

In this section, we first introduce the data, and then discuss the GP algorithm for maximizing

the Sharpe ratio in the cross-section, along with a review of other machine learning methods for

comparison.

2.1. Data

As usual, we use all domestic common stocks listed on NYSE, AMEX, and Nasdaq stock mar-

kets, and exclude close-end funds, real estate investment trusts, unit trusts, American depository

receipts, and foreign stock (or stocks that do not have a CRSP share code of 10 or 11). As the

literature typically does, we employ the price filter to exclude the stocks with price below $5.

2Nordhaus (2001) shows that the computing power has increased by around 80% per year since 1980.
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The primary set of characteristics consists of 15 variables: the market capitalization (size)

and 3 past return-based signals, i.e., R−1, R−12,−2, and R−60,−13, which correspond to the short-

term reversal (SREV ) of Lehmann (1990), Lo and MacKinlay (1990), momentum (MOM) of

Jegadeesh and Titman (1993), and long-term reversal (LREV ) of DeBondt and Thaler (1985),

respectively. In addition, we also include the 11 price moving average (MA) signals used in Han,

Zhou and Zhu (2016), including MAs of lag lengths of 3-, 5-, 10-, 20-, 50-, 100-, 200-, 400-, 600-,

800-, and 1000-days. Following the most recent studies, we normalize each indicator in the cross-

section such that it has a mean of zero and a standard deviation of one without loss of generality.

We use this characteristic set because it is easy to construct, making it ideal for comparison in

international markets. However, since this set relies heavily on technical signals, we also use another

15 characteristics of Lewellen (2015), which are mostly fundamental variables, as a robustness check.

2.2. The GP algorithm

In this subsection, we first discuss the objective function and search space, and then we introduce

the optimization procedure and hyperparameter tuning.

2.2.1. Incorporating economic objective

Our economic objective is to maximize the Sharpe ratio of a portfolio based on firm charac-

teristics, which is of importance to an investor or fund manager who would like to achieve the

maximum economic gains from the information on characteristics. While we find that it is difficult

to solve this problem using other existing machine learning tools, the GP appears the best to fit

the purpose.

Mathematically, our objective is to find a function G(·) to maximize the Sharpe ratio (SR)

of the usual decile long-short spread portfolio, but here the long and short legs are determined

endogenously,

max
G(·)∈M

SR(Spread(G(·))), (1)

where M is the search space, G(·) is a function mapping from the stock characteristics to the

expected return, and Spread(G(·)) is the resulting spread portfolio. In particular, suppose X is a

panel data of stock characteristics, in which Xi,t is a vector of characteristics for stock i on month
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t. Denote the expected return for stock i in month t generated by G(·) as

ERi,tG = G(Xi,t−1). (2)

Then, we can sort stocks by ERi,tG in each month into decile groups and construct a value-weighted

spread portfolio, so weighted as all other portfolios in the paper, and denote it as Spread(G(·)).

Put differently, we want to search for the optimal function G(·) to maximize the Sharpe ratio of

Spread(G(·)).

Genetic programming (GP) is a supervised machine learning method based on the principle of

Darwinian natural evolution. Since its launch by Koza (1992), GP has been successfully applied in

various fields, such as economics, finance, and engineering. GP randomly generates initial popula-

tion of a certain number of individuals, each of which is a solution candidate to the given problem.

The performances of the solution candidates are evaluated according to a problem-specific fitness

function (objective function), which defines the environment for the evolution. Then, the individu-

als are randomly selected as parents individuals, with the selection probabilistically biased in favor

of the relatively fit members. Next, the parents individuals are combined by genetic operators,

such as crossover and mutation, to creates offspring individuals. Afterward, successive generations

are generated in the same way until the final generation.

For the optimization problem of Equation (1), the GP is ideal, as it is often used for solving

optimization problems with objective functions which are non-differentiable or difficult to be ex-

pressed in other optimization approaches. In addition, as a non-parametric model, GP can discover

both the model structure and model parameters, and thus are more flexible in exploring nonlinear

predictability. Moreover, due to the stochastic nature, it is less likely to converge to local optima,

and it is generally suitable to search for global optimum in large search space.

2.2.2. Representation and search space

In GP, the solution candidates are represented as tree structures and can be encoded as function

G(·) mapping from characteristics X to expected returns, which is discussed in the Online Appendix

in more detail. Each individual G(·) is build of two basic primitives, the terminal nodes and function

nodes. Essentially, the terminal nodes provides the inputs to the GP program, and it includes the

input characteristics (X) and some random constants. The function nodes comes from a pre-
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defined function set. Panel A of Figure 1 shows an example of the tree-structure individuals. It

consists of two characteristics of X1 and X2, a random constant of 1, and two function operators

of MULTIPLY (×) and ADD (+). It can be coded as a function G(X) = X1(X2 + 1). In terms

of its economic interpretation, this solution represents such a hypothesis about the cross-section of

stock returns that stocks with greater X1 tends to have higher future returns. In addition, it also

assumes that this effect increases with X2 by adding an interaction item of X1 and X2.

The search space M is spanned by a large set of functions combining an indicator set and an

function set. The indicator set X includes the firm characteristics such as the 15 discussed in section

2.1.. The function set includes both commonly used linear and nonlinear operators, examples of

which the linear functions are ADD, MINUS, NEGATIVE, and the nonlinear ones are MULTIPLY,

DIVIDE, SIN, COS, ABS, and bool-type operator CMP. This enables GP to exploits both the linear

and nonlinear predictability of the characteristics. However, though we do not assume any specific

function form for G(·), we limit the maximum of tree depth to 30 for tractability. This still enables

a sufficiently large space of millions of candidate solutions, and controls the model complexity and

overfitting at the same time.

2.2.3. Optimization

It is important to examine how the GP selects the individuals to maximize the Sharpe ratio.

Different from the common gradient-based method, the optimization of GP is based on the principle

of Darwinian natural evolution.

Essentially, GP optimizes the given problem by iteratively producing offspring individuals based

on genetic operators and then selecting strong individuals by the natural selection principle. The

direction of the evolution is characterized by the fitness function, i.e, the optimization objective,

which is the Sharpe ratio of the spread portfolio in our case. In particular, after initiating the

random individuals in the first generation, GP will calculate their associated Sharpe ratios. Then,

to produce new individuals for the next generation, the individuals are randomly selected as parent

individuals, with the selection probabilistically biased in favor of the relatively fit individuals with

greater Sharpe ratios. Next, the parent individuals are combined by genetic operators, such as

crossover and mutation, to create new offspring individuals.
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Figure 1 illustrates how the crossover and mutation operators work. As suggested by the

green and red box in Panel A to D, the parent individuals in Panels A and B are combined

by the crossover operator, and the resulting offspring individuals are shown in Panels C and D.

The offspring individuals can also be produced by the mutation operators. For example, the

characteristics of X2 and the constant number of 1 in the green box in Panel A can mutate to X3

and 2 in Panel E, respectively. Also, the mutation operator can also work on the function node and

the whole subtree. For example, the subtree of X3, shown in the red box in Panel B, can mutate

to another subtree of |sin(X1)| in Panel F.

After applying these genetic operators to produce offsprings, GP will evaluate the fitness of these

offspring and parent individuals, and those with greater Sharpe ratios will survive as individuals in

the next generation. Afterward, successive generations are iteratively generated in the same way,

until the generation number exceeds a pre-defined max generation Gen.

Moreover, following Zhang and Bhattacharyya (2004) and Bhowan, Johnston, Zhang and Yao

(2012), we adopt an ensemble approach in training our GP model to improve the model robust-

ness and to mitigate overfitting. In particular, since GP has the advantage of parallel computing

(Winschel and Krätzig, 2010, and Polachek, Das, and Thamma-Apiroam, 2015), we independently

estimate GP for five times, and get 5 × Pop individuals (or models) in total, as each time GP

generates Pop individuals. Because of the stochastic nature of GP, this helps search for the global

optima rather than being accidentally trapped by a local optimum. Finally, we take the average of

the top M models with the highest training sample Sharpe ratio as the final model. Although M

is set to 5, we have also examined alternative values of 3 and 10 as robustness check.

2.2.4. Hyperparameter tuning

There are two important hyperparameters that control the optimization process of the GP.

The first is Population (Pop), defined as the number of individuals that GP will generate in each

generation. The second is Generation (Gen), used to determine the maximum generation that the

evolution will iterate. Clearly, the pair <Pop, Gen> characterize the searching depth for GP, and

have influence on model performance. Since there is no theoretical criterion for the selection of the

pair, we follow the most common approach in the literature and select the hyperparameters in a
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validation sample. The validation sample can be interpreted as a simulated OOS sample to learn

about model complexity and hence to mitigate overfitting.

In our paper, the parameter values for Pop are 100, 200, and 400, and those for Gen are 10,

20, and 40.3 Hence, there are 9 hyperparameter combinations for GP. For a given < Pop,Gen >,

we use the training sample to estimate the GP model, and use the average of the top M (M=5)

model as the model, denoted as G<Pop,Gen>. We then evaluate the performance of the 9 models in

the validation sample. The optimal model G∗<Pop∗,Gen∗> is the one that earns the highest Sharpe

ratio for the spread portfolio in the validation sample. Last, we use the out-of-sample subsample,

which is not used for model estimating nor parameter tuning, to examine the OOS performance of

the optimal GP model.

2.3. Other methods

For easier comparison, we briefly introduce below other machine learning methods, i.e., those

used by Gu, Kelly, and Xiu (2020).

2.3.1. Ridge

Ridge regression imposes an l2 norm in the standard regression model,

β̂Ridge(λ) = arg min
β
{ 1

NT

N∑
i=1

T∑
t=1

(ri,t − β0 −
P∑
j=1

Xi,t−1,jβj)
2 + λ

P∑
j=1

β2j }, (3)

where the parameter penalization helps to prevent coefficients from becoming unduly large in

magnitude.

2.3.2. Lasso

Lasso regression imposes the l1 norm,

β̂Lasso(λ) = arg min
β
{ 1

NT

N∑
i=1

T∑
t=1

(ri,t − β0 −
P∑
j=1

Xi,t−1,jβj)
2 + λ

P∑
j=1

|βj |}, (4)

3We do not use too large parameters because the GP is computationally extensive. For example, in our applica-
tions, it takes about 24 hours to just estimate the model once under the parameter of < 400, 40 >. Nevertheless, the
chosen values are adequate in robustness checks.
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where the parameter penalization helps to force coefficients on some regressors to exactly zero,

thereby selecting the most useful variables.

2.3.3. Enet

The elastic net (Enet) model imposes both l1 and l2 norms,

β̂Enet(λ, ρ) = arg min
β
{ 1

NT

N∑
i=1

T∑
t=1

(ri,t − β0 −
P∑
j=1

Xi,t−1,jβj)
2 + λ

P∑
j=1

(ρβ2j + (1− ρ)|βj |)}. (5)

It is clear that ρ = 1 corresponds to the Ridge, and ρ = 0 corresponds to the Lasso. In our

paper, we set ρ = 0.5, allowing for the associated Enet takes the advantages of both shrinkage and

selection. The hyperparameter λ, in Ridge, Lasso or Enet, is determined by validation sample.

2.4. Dimension reduction models

2.4.1. PCR

Principal components regression (PCR) performs dimension reduction by zeros out coefficients

on low variance components. It consists of two steps. In the first step, principal components analysis

(PCA) combines the P regressors into a small set of K components (K ≤ P ), which are linear

combinations that best preserve the covariance structure among the regressors. Mathematically,

the kth PCA component direction vm solves:

maximize
v

V ar(Xv)

subject to ||v|| = 1,

Cov(Xv,Xvl) = 0,

l = 1, · · · , k − 1.

(6)

In the second step, regressions of stock return on the leading components are run to predict future

returns.
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2.4.2. PLS

Partial least square (PLS) regression performs dimension reduction by directly exploiting co-

variation of regressors with the forecast target. In the optimization form, the kth PLS components

solves :
maximize

v
Cov2(r,Xv)

subject to ||v|| = 1,

Cov(Xv,Xvl) = 0, ,

l = 1, · · · , k − 1.

(7)

Then, a regression, similar to the PCR case, is run to determine the expected stock returns.

2.5. Neural Networks

Following Gu, Kelly, and Xiu (2020), we construct the neural networks for our study in the

same way. We consider the architectures with up to five hidden layers. The The shallowest neural

network, denoted as NN1, has a single hidden layer of 32 neurons, NN2 has two hidden layers

with 32 and 16 neurons, respectively; NN3 has three hidden layer with 32, 16, and 8 neurons,

respectively; NN4 has four hidden layer with 32, 16, 8, and 4 neurons, respectively; and NN5 has

four hidden layer with 32, 16, 8, 4, and 2 neurons, respectively. The nonlinear activation function

is also the same rectified linear unit (ReLU) function for all nodes, defined as

ReLU(x) =

{
0 if x ≤ 0

x otherwise,

Moreover, we also employ the stochastic gradient descent (SGD) to estimate the neural network

weight parameters to minimize the mean squared errors. We denote the expected return generated

by NNl (l = 1, 2, 3, 4, 5) for stock i in month t as ERi,tNNl
.

3. Main results

In our GP applications below, we split the full sample, from 1945:01 to 2019:12, into three

subsamples. The training subsample from 1945:01 to 1980:12 is used to train the machine learning

models. The validation subsample from 1981:01 to 1990:12 is used to choose the hyperparameters
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in these models.4 The out-of-sample (OOS) subsample from 1991:01 to 2019:12 is used to evaluate

the models’ predictive performance.

3.1. Spread portfolios

Table 1 reports the OOS performance of the value-weighted decile spread portfolios sorted by the

expected return of various models. It is interesting that there are not much differences in the linear

models, whose annualized Sharpe ratios range from 0.68 to 0.81. Consistent with Gu, Kelly, and

Xiu (2020), the neural networks tend to outperform the linear machine learning methods, achieving

the highest annualized Sharpe ratio of 0.96. In contrast, the GP earns the best annualized Sharpe

ratio up to 1.32, more than 37% greater than the next best level of 0.96.

In terms of average returns, the GP also performs the best, with a monthly return of 1.71%,

while the next largest average return, achieved by NN2, is only 1.22%. The linear models also have

lower returns at about 1.00%. Moreover, in terms of skewness, the GP enjoys a positive skewness

of 1.17, while the skewness is of the linear models are lower than 0.5. However, NN2 has the largest

skewness of 1.50, but it is too volatile and does not even have the highest Sharpe ration among the

neural networks models.

Table 2 reports the sub-sample results before and after 2003, a year when Green, Hand, and

Zhang (2017) detect a major structural break for predicting the cross-sectional returns. Panel A

shows that during the pre-2003 sub-period, the GP yields the highest spread return (2.93%) and

the greatest Sharpe ratio (1.89). Interestingly, the linear models perform almost as well as the

average of the neural network models. Hence, during this “easier” to predict periods as identified

by Green, Hand, and Zhang (2017), existing machine learning methods, linear or nonlinear, do not

seem to make much differences. This is because, though NN5 does the best, it is ex ante difficult

to select NN5 out of all the models. Nevertheless, the GP still stands out and performs the best as

expected.

Panel B reveals a much different pattern. In this “difficult” to predict period, all linear models

fail to generate significant average returns on the spread portfolios, and even three of the 5 neural

networks models fail. In contrast, the GP earns an economically and statistically significant monthly

4Following Gu, Kelly, and Xiu (2020), we do not choose cross-validation to maintain the temporal ordering of the
data for prediction.
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average return of 0.72%. In terms of Sharpe ratio, it has the highest of 0.77, exceeding the next

best level of 0.55, achieved by the best neural network model NN4, by 40%.

In short, empirically both in the subperiods and in the entire out-of-sample period, the GP

achieves what it is designed for, to maximize the Sharpe ratio. This is one of the most important

measures investors or fund managers rely upon in assessing a portfolio strategy.

3.2. Controlling for other models

Since GP and other models exploit different predictive information from the same characteristic

set, it is of interest to examine which of them can provide incremental predictive power beyond

the use of the other. Consider, for example, how to measure the incremental predictive power of

the GP conditional on any other model. A simple approach is to regress the expected stock return

generated by the GP on those generated by a given other model, and then sort the residuals into

decile portfolios to see whether the new long-short spread portfolio can earn significant profits.

Clearly, if the predictive power of the GP is subsumed by the given model, we should not be able

to observe any profitable pattern in the resulting spread portfolio.

Panel A of Table 3 reports the results. After controlling for the expected return generated by

any of the other models, the GP still produces highly significant spread returns in every single case.

The results clearly indicate that the GP has certain unique predictability which cannot be replaced

by any of the other models.

Conversely, we also examine the predictive power of any other model after controlling that of

the GP. Panel B of the table shows that, after controlling for the GP, none of the other machine

learning models can produce significant spread returns. The results suggest that the predictability

of all the other models are subsumed by the GP.

3.3. Information uncertainty

To understand under what conditions where the GP and other methods differ, we focus on

information uncertainty, and, following Zhang (2006), use idiosyncratic volatility (IVOL) to proxy

for it. In particular, we construct an IVOL index, defined as the average of IVOL of individual

stocks in each month, to reflect the information uncertainty at the market level. The greater the
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IVOL index, the greater the information uncertainty across stocks.

We carry out the following time-series predictive regression,

∆Rt = βLLow
V ol
t−1 + βHHigh

V ol
t−1 + βMKTt + εt, (8)

where ∆Rt is the return of the GP spread minus that of other models, LowV olt−1 and HighV olt−1 are

dummy variables indicating low- and high-IVOL periods of previous month, as classified based on

the median level of the IVOL index. The parameters of interest are βL and βH , indicting either

the low- or high-IVOL period or both matter for the GP outperformance.

Table 4 reports the results. The slope βH is greater than βL for all of the ten models. Moreover,

βL is insignificant for nine of the ten spreads, while βH is significant except for the NN2 case. On

average, βH is 1.02 with a significant t-statistic of 2.43, whereas βL is much lower at 0.31 with a

weak t-statistic of only 1.20. The results suggest that the improved performance of GP over other

models is mainly attributed to the high-IVOL periods, during which the information uncertainty

level is high. From an investment perspective, it is more difficult and hence more important to

predict returns more accurately with greater information uncertainty. The GP appears to help

exactly to do it in comparison with other methods.

3.4. GP factor

In this subsection, we consider a factor formed based on the GP and compare it with various

well known factor models in the literature.

Following Fama and French’s (1993) factor formulation approach, we construct a GP factor

(GPF) based on a 2 × 3 double sorting on size and ERGP . The factors for the comparison are:

the CAPM, the Fama and French (1993) 3-factor model (FF-3), Fama and French (2015) 5-factor

model (FF-5), Hou, Xue, and Zhang (2015) 4-factor model (HXZ-4), Stambaugh and Yuan (2016)

mispricing-factor model (SY-4), and Daniel, Hirshleifer, and Sun (2020) behavioral-factor model

model (DHS-3), with data from their websites.

Table 5 reports the results.5 The GPF earns the greatest monthly average return of 1.20%,

almost doubling the next best factor of 0.69%. Its annualized Sharpe ratio, 1.75, is also the

5We use the earliest sample ending month of the data, SY-4, as our last period, 2016. The results are similar if
we use a different end period for other available data.
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maximum, almost doubling the next best too, 0.86. It has large skewness of 0.85, indicating a

desirable positive return pattern, whereas its kurtosis is about the average, with tails neither too

fat or skinny. Panel B provides the correlation matrix of the factors. It shows that the GPF has

low correlation with the well known factors.

Although the GPF other factors and has little correlation with each one of them, it does not rule

out the hypothesis that a portfolio of other factors can replicate the performance of the GP. To test

this hypothesis, we carry out six spanning tests: Wald test under conditional homoskedasticity,

Wald test under independent and identically distributed (IID) elliptical distribution, Wald test

under conditional heteroskedasticity, Bekerart-Urias spanning test with errors-in-variables (EIV)

adjustment, Bekerart-Urias spanning test without the EIV adjustment and DeSantis spanning test

(see Kan and Zhou, 2012).

Panel A of Table 6 provides the results for the spanning tests. The spanning hypothesis is

strongly rejected, indicating that the GPF can add substantial investment value to existing factor

models. Barillas and Shanken (2017) show that investment value is related to model comparison.

If a new factor can add substantial Sharpe ratio to an existing factor model, an extended model by

adding the factor must outperform the existing model in explaining asset returns, irrespective of

the test assets. Along this line, we conduct the Sharpe ratio test to compare the Sharpe ratios(Sh2)

of the various models with and without the GPF.

Panel B of Table 6 reports the results. It is apparent that adding the GP factor substantially

improves the Sh2 for all of other models. For example, the Sh2 for CAPM increases significantly

from 0.026 to 0.265, where the significance level is computed based on a studentized bootstrap

procedure due to Ledoit and Wolf (2008). The virtually zero p-values cross the models suggest that

the GP factor can improve the pricing ability of existing models substantially.

3.5. Risk-adjusted performances

Table 7 reports the alphas of the spread portfolios of the machine learning methods under

different factor models. The first 6 rows show that all of the 11 spread portfolios earn highly

significant alphas with respect to all the well known existing factor models: the CAPM, FF-3, FF-

5, XHZ-4, SY-4, and DHS-3, indicating that existing factor models cannot explain the predicted
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returns of the machine learning methods. In fact, the magnitude of the alphas are much larger

than almost all of those classic anomalies in the literature (see, e.g., Hou, Xue, and Zhang (2015)).

In contrast, as shown by the last row, all the alphas become insignificant relative to the extended

CAPM with the GPF as the added factor. Indeed, the largest alpha is now only 30 basis points,

while the average alphas exceed 1% previously. The results are similar if the GPF is added to any

other factor models, suggesting that the GP factor improves substantially the pricing ability of

existing models.

4. Robustness

4.1. Alternative characteristics

In this subsection, we examine the performance of the machine learning methods when applied

to another 15 characteristics, the typical one used by Lewellen (2015). Different to the characteristic

set used in the main results which relies heavily on technical indicators, this new data set are mainly

fundamental variables: size, book-to-market ratio, the growth in split-adjusted shares outstanding

from month -36 to month -1, accrual, ROA, annual growth of total asset, dividend yield, the

growth in split-adjusted shares outstanding from month -12 to month -1, market beta, the return

from month -12 to month -2, the return from month -36 to month -13, return volatility, turnover,

debt-to-price ratio, and sales-to-price ratio.6 Since this characteristic set uses the accounting data

from the Compustat, the sample period is much shorter and starts in January 1976. Hence, we set

below the training sample from 1976:01 to 1995:12, the validation sample from 1996:01 to 2000:12,

and the OOS sample from 2001:01 to 2019:12.

Table 8 reports the OOS performance of the spread portfolios. It is important to note that none

of the linear models can generate significant returns, although they still have positive returns and

still outperform substantially the OLS model (unreported). The neural network models, however,

do yield significant gains in 3 out of 5 cases. In contrast, GP still performs the best, earning the

greatest significant return of 0.99%, improving the next best one by about 60%. Its Sharpe ratio

is the largest, 0.74, as expected, which improves the nest best one by about 70%. In contrast to

6The detailed constructions of these variables are provided by Lewellen (2015) and are also available in the Online
Appendix.
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the previous set of characteristics, the new one has less predictability on the cross-section of the

stock returns. In this case, the GP outperforms other methods even more in terms of percentage

improvement.

4.2. International markets

In this subsection, we examine the performance of the GP in the major international stock

markets. As emphasized by Schwert (2003), the use of alternative data sets is one way to mitigate

the concern of data-snooping. For brevity, we focus on other G7 countries: the UK, Canada, Japan,

Italy, France, and Germany.

There is one unique feature in our applications to the international markets. Instead of re-

estimating the machine learning models in each market, we directly apply all of them estimated in

the US directly to other markets. Since the data in other markets are not used for neither model

estimation nor parameter tuning, they offer a perfect setting to examine the OOS performance.

Table 9 reports the results. There are two notable patterns. First, the GP substantially out-

performs other machine learning methods, achieving the largest Sharpe ratio in all the 6 markets.

For example, in UK, it has a Sharpe ratio of 1.09 with an average monthly return of 1.69%. Al-

though the Sharpe ratio from NN2 is high, but the average across the other methods is about 30%

lower than the GP. The result is echoed by the average cross the markets, reported in Panel G.

The second pattern is that linear models perform well in the international markets relative to the

nonlinear neural networks. This differs from the US market where the latter dominates the former.

The pattern is interesting and puzzling, and is a subject of future research.

In short, GP performs well not only in the US, but also internationally in other G7 markets,

even with the same model estimated in the US. The strong performance of the GP internationally

indicates that the method captures salient features of the market and is robust to alternative data

sets.

4.3. Alternative parameters

For the main results, the GP model is estimated under the hyperparameters < Pop,Gen >=<

200, 40 >, which is determined by the validation sample. We now further examine the robustness
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under alternative parameters.

4.3.1. In-sample performance evolution

Consider alternative parameters for Pop: 100, 200, and 400, and that for Gen: 10, 20, and 40.

There are a total of 9 sets of the hyperparameters. For a given < Pop,Gen >, we independently

estimate GP for 5 times, and get 5×Pop models (individuals) in total. We use the average of the

top M models with the highest Sharpe ratios in the training sample as the final model. Note that

M = 5 in our main results, and here we also consider alternative values of 3 and 10.

Table 10 reports the results with the alternative < Pop,Gen >’s and M ’s. There are a few

interesting facts. First, since < Pop,Gen > characterizes the searching depths for GP, the Sharpe

ratio in the training sample increases with < Pop,Gen >. For example, for Pop=100 and M = 5, ,

the annualized Sharpe ratio grows from 2.04 to 2.85 as Gen increases from 10 to 40. Second, while

the training sample Sharpe ratio generally increases with Pop, the effect is weaker. For example,

for Gen=10 and M = 5, the Sharpe ratio increases from 2.04 to only 2.28 as Pop increases from

100 to 400. In particular, for a deeper Gen of 40, the Sharpe ratios are almost flat among different

Pop. In general, the in-sample performance increases with < Pop,Gen >, but is more sensitive

with respect to Gen.

Third, by comparing the validation Sharpe ratios of various parameters in Panel A, we find that

the parameter < Pop,Gen > of < 200, 40 > achieves the largest validation sample Sharpe ratio of

2.66, supporting our earlier parameter choice. This choice also achieves the best OOS performance:

the spread portfolios earns the largest annualized Sharpe ratio of 1.32, as shown earlier in Table

1. Forth, although the objective of GP is to maximize the spread portfolio’s Sharpe ratio, we also

report the average return of the spread portfolios for other parameters. In general, the spread return

exhibits similar patterns as the Sharpe ratios. For example, the training sample return increases

with < Pop,Gen >. The largest validation return is also achieved at < Pop,Gen >=< 200, 40 >.

Fifth, Panel B and Panel C show similar patterns to Panel A, indicating that the performance is

robust to M . Overall, the results are economically not too far apart even though the parameter

values are substantially different.
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4.3.2. Sharpe ratio evolution

To understand further the performances under the alternative parameters, we examine now how

the Sharpe ratio changes in the GP algorithm as the population grows.

Figure 2 presents the plots of the Sharpe ratios. Consider Figure A. Since the Pop is 100,

the max number in the X-axis is 100 for the individual. The blue curve plots the training sample

Sharpe ratios averaged over the five estimations. The green curve and the red line one and those

for the validation sample and OOS sample, respectively. Since we sort the individuals (models) by

their training sample Sharpe ratio, the blue curve shows a monotonic increasing pattern. It is clear

that OOS performance is weaken in comparison with in-sample and validation. However, it does

share the same pattern, indicating that greater in-sample Sharpe ratios tend to generate stronger

predictability in the OOS sample.

As Gen increases, the green and red line become less volatile. For example, in comparison

Figures B and C, the green and red line are much flatter, suggesting that the solution converges to

a stable OOS performance. In the Online Appendix, we provide detailed results to show that the

model performance volatility decreases with Gen.

5. What drives GP’s performance?

In this section, we explore the reasons why the GP can outperform the other machine learning

methods.

5.1. Objective function

An obvious question is whether the objective function plays a role in the performance. To

examine this, instead of maximizing the Sharpe ratio as we did before, we now consider the objective

of minimizing the conventional mean squared error (MSE) of the predicted returns. We denote this

model as GPMSE , and denote the previous GP model of maximizing the Sharpe ratio as GPSR.

Table 11 compares the performance of the two models. The spread portfolio of GPMSE yields

an average monthly return of 1.44% with an annualized Sharpe ratio of 1.04. The performance is

comparable to and slightly better than that of the neural network (NN2) in Table 1, which earns a
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mean return of 1.22% and a Sharpe ratio of 0.92. However, it is important to note that GPMSE is

dominated by GPSR. Since the Sharpe ratio is a comprehensive metric which considers the trade-

off between return and risk, the results show that it does do better in terms of both return and

volatility. Indeed, compared with GPMSE , GPSR not only earns a higher spread return of 1.71%,

but also produces a lower volatility of 4.47%. As a result, GPSR yields a greater Sharpe ratio of

1.32, about 30% larger than that of GPMSE . In addition, GPSR also earns a much higher positive

skewness of 1.17, while that for GPMSE is only 0.37.

As an alternative way to compare GPMSE with GPSR, we regress the expected returns generated

by the two GP models on each other, and then examine the performance of the resulting spread

portfolio sorted by the residuals. The right panel of Table 11 reports the results. Controlling for

GPSR, GPωMSE generates a negligible spread return of 0.27% with a weak t-statistic of only 0.83,

indicating that the predictability of GPMSE is subsumed by GPSR. In contrast, controlling for

GPMSE , GPωGP still earns a persistent spread return of 0.91% with a significant t-statistic of 5.69,

suggesting that GPSR contains additional predictability uncorrelated to GPMSE .

In short, compared with the conventional MSE-based models, the reason for the economic gains

of using our proposed GP model arises from maximizing the spread portfolio’s Sharpe ratio directly.

By considering both return and risk, the metric produces much higher Sharpe ratio and outperforms

the MSE-based models of the GP and other machine learning methods.

5.2. Linearity vs nonlinearity

It is well known that the standard MSE estimator of the parameters is efficient if the data are

normally and independent and identically distributed. In this case, there is likely little difference

between MSE minimization and Sharpe ratio maximization. However, when the true data have

nonlinearity (see, e.g., Freyberger, Neuhierl, and Weber, 2020), the difference will likely be large.

We show that this is indeed the case via simulations.

Consider the linear case first. Following Freyberger, Neuhierl, and Weber (2020), we simulate

data from a linear model with a set of fixed predictors:

1. Assume the “true” predictor set Z consists of Size, SREV , MOM , and LREV .
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2. Regress the stock return R on the assumed predictor set Z in a panel regression, pooled over

the entire sample from 1945 to 2019. Then, decompose R into the fitted part (R̂i,t) and the

residual (εi,t).

3. Generate returns according to R̃i,t = R̂i,t+ ε̃i,t, where ε̃i,t is resampled with replacement from

the empirical residuals in step 2. To generate the residuals in a particular month t, we first

draw a random time period, say month s, from which we sample the residuals. Moreover, to

ensure we sample from the distribution with zero means, we re-center the original residuals

each month.

4. Based on the simulated return R̃i,t from step 3 and the predictor set for investment use, Q,

consisting of Size, SREV , MOM , and LREV , we estimate the GP and other benchmark

models, and examine their OOS performance.

Note that Q is the same as Z from step 1, and this is equivalent to assuming the true predictors

are known to investors.

5. Redo steps 3-4 for 500 times.

For the nonlinear case, the simulation procedure is similar, except that we add the interaction

terms in the true predictor set. That is, Z now consists of 10 variables: Size, SREV , MOM , and

LREV , as well as 6 pairwise interaction terms of these four variables. Suppose the true data process

is generated by this new predictor set. We then estimate the coefficients in a panel regression. In

particular, we scale the slopes on the interaction terms to make them comparable to those of the

four original predictors.7

Note that in the linear simulation, the true predictor set Z is the same as the indicator set

Q, which is the input data for training the models. In this case, the linear model is the true

model and hence is expected to perform well. In the nonlinear simulation, however, the true

predictor set Z include the nonlinear interaction effects, while we still use the same indicator set

Q for forecasting. Since GP captures nonlinearity, we expect that GP will show its strength in the

nonlinear simulation.

7We multiply the slopes on the interaction terms by 8, and also get qualitatively robust results under alternative
values.
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Table 12 reports the average OOS statistics in the linear and nonlinear simulations. In particu-

lar, we also consider a special benchmark model, the fitted return R̂i,t from step 2 in the simulation

procedure. R̂i,t, by construction, contains all the predictability in the simulated return R̃i,t, and

hence, it can be interpreted as the optimal model.

The left panel reports the Sharpe ratios. In the linear simulation, the model of R̂i,t produce a

Sharpe ratio of 1.33. GP earns a Sharpe ratio of 1.24, which is only slightly less than the optimal

model. Meanwhile, consistent with our prediction, all the linear models performs well in the linear

simulation, and yield Sharpe ratios around 1.30, very close to that of R̂i,t. It is not surprising to

see the good performance of the linear models, because, in the linear simulation, these models are

the true models and hence are expected to achieve similar performance with R̂i,t.

In the nonlinear simulation, as we include the nonlinear interaction terms, which increases the

overall predictability, the Sharpe ratio of the optimal model R̂i,t increases substantially by 153%,

from 1.33 to 3.36. It is important to note that the Sharpe ratio of GP also grow significantly by

148%, from 1.24 to 3.08, which is close to that of the R̂i,t. On the contrary, although linear models

also produce better performance in the nonlinear case, the resulting Sharpe ratio of around 2.05 is

much lower than that for GP and R̂i,t, and the rowth rate of 50% is also much smaller than that

for GP.

The right panel reports the mean returns. In the linear case, the return of the linear models

are very close to that of R̂i,t. Since the objective of our GP is to maximize the Sharpe ratio rather

than the return, GP earns a little bit lower OOS returns than other linear models in the linear

case. But in the nonlinear case, GP yields higher return than other linear models.

In short, consistent with our prediction, while linear models perform well in the linear simulation,

GP outperforms linear models in the nonlinear simulation. This evidence suggests that the ability

to exploit nonlinear predictability is another source for GP’s good performance.

5.3. Bootstrap with different sample size

In this subsection, we carry out bootstrap analysis to compare the performance of GP and NN

under different sample sizes.

We choose two different sample size. In the first simulation, in each month t, we resample
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stocks so that the stock number in the simulated data is only half of the actual stock number.

In the second simulation, we do the same but double the stock number in the simulatiton each

month. Then, based on the simulated data, we estimate GP and NN models, and examine their

OOS performance.

Table 13 reports the average OOS statistics for the spread portfolios of GP and NN.8 The

performance of GP is robust to the sample size. For example, in both sample sizes, GP earns an

annualized Sharpe ratio of about 1.00 and a mean return of 1.60%. In contrast, the performance of

NN is sensitive to the sample size. In particular, when we reduce the sample size to half, the OOS

performances of NN become substantially worse. As the sample size increases, they become better.

In short, GP has stable performances under reasonable sample sizes, while NN is more sensitive

to it. This provides another reason (besides objective functions) why, although both are nonlinear

models, the GP has better performances previously than the NNs.

6. Conclusion

In this paper, we propose to maximize the Sharpe ratio of a portfolio via genetic programming

(GP), one of the machine learning tools applied here the first time for the study of the cross-section

of stock returns. Our approach directly optimizes the Sharpe ratio by searching a function that

maps from the stock characteristics to the expected stock returns in a large functional space. We

find that the performance of the GP spread portfolio in the cross-section outperforms substantially

the usual MSE-based models, such as ridge, lasso, Enet, PCR, and PLS. It also outperforms

significantly the more powerful neural networks by subsuming their predictability. While existing

factor models fail to explain the performance of the MSE-based machines learning methods, a single

factor based on the GP fully captures all their spread portfolios. The performance of the GP is

robust to alternative parameters, different characteristics, and international data sets. We find

further that the good performance of the GP is due to its economic objection optimization, and it

is less sensitive to sample size than the neural networks.

Our empirical evidence suggests that it is important to apply machine learning tools to maximize

economic objectives, beyond the scope of the traditional model fitting. Since the Sharpe ratio is one

8The time for estimating GP model increases with sample size. To save time, the parameter < Pop,Gen > for GP
in this analysis is < 100, 10 >. We repeat the simulation for 10 times, and the table reports the average statistics.
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of the most important performance measure of a trading strategy, the present framework can be

applied in many areas to maximize the Sharpe ratio. It will not only be useful for a fund managers

to improve investment performance in various asset classes, but also be useful for researchers to

identify potentially the largest anomalies in currencies, corporate bonds or commodities. These are

interesting issues for future research.
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Figure 1: Tree-structured representation and genetic operators

This figure illustrates the tree-structured individuals and the genetic operators of crossover and

mutation. The parents individuals in Panel A and B are combined by the crossover operator, and

the resulting offspring individuals are shown in Panel C and D. The offspring individual in Panel

E (F) is produced by the mutation operator from the individual in Panel A (B).
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Figure 2: GP’s performance under various hyperparameters

This figure shows the monthly Sharpe ratio of the spread portfolios generated by GP under various

parameters. For a given set of the parameter < Pop,Gen >, we independently estimate GP model

using training sample for five times and get Pop individuals each time. We sort the individuals

within each time by their associated Sharpe ratio in the training sample. The blue (green, or red)

lines show the Sharpe ratios of the individuals average over the five estimations in the training

(validation, or OOS) sample.

(A) < Pop,Gen >:< 100, 10 > (B) < Pop,Gen >:< 200, 10 > (C) < Pop,Gen >:< 400, 10 >

(D) < Pop,Gen >:< 100, 20 > (E) < Pop,Gen >:< 200, 20 > (F) < Pop,Gen >:< 400, 20 >

(G) < Pop,Gen >:< 100, 40 > (H) < Pop,Gen >:< 200, 40 > (I) < Pop,Gen >:< 400, 40 >
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Table 1

Spread portfolios

The table reports the summary statistics for the decile spread portfolios generated by the GP and other models. For each model,

we report the average monthly return in percentage points, the Newey-west (1987) robust t-statistic, the annualized Sharpe ratio

(Sharpe) and the skewness (Skew). The sample period is from 1991:01 to 2019:12.

GP Ridge Lasso Enet PCR PLS NN1 NN2 NN3 NN4 NN5

Low 0.08 0.58 0.54 0.51 0.61 0.57 0.71 0.68 0.67 0.43 0.37

2 0.57 0.67 0.69 0.77 0.75 0.70 0.80 0.76 0.91 0.68 0.67

3 0.57 0.90 0.90 0.81 0.81 0.89 0.86 0.92 0.87 0.78 0.76

4 0.50 0.93 1.00 1.00 0.98 0.95 0.92 0.96 1.04 0.86 0.87

5 0.74 1.14 1.12 1.10 1.18 1.13 1.16 1.09 1.17 0.85 0.91

6 1.06 1.12 1.14 1.16 1.18 1.13 1.08 1.30 1.03 0.92 0.85

7 1.09 1.30 1.41 1.36 1.21 1.29 1.12 1.29 1.16 1.17 0.94

8 1.53 1.42 1.38 1.40 1.51 1.41 1.16 1.38 1.40 1.18 1.08

9 1.49 1.58 1.46 1.52 1.46 1.61 1.31 1.41 1.36 1.33 1.42

High 1.79 1.64 1.67 1.61 1.53 1.61 1.66 1.90 1.80 1.56 1.47

H-L 1.71*** 1.06*** 1.13*** 1.10*** 0.92*** 1.04*** 0.95*** 1.22*** 1.13*** 1.12*** 1.10***

t-stat 7.12 3.99 4.35 4.27 3.66 3.92 4.07 4.93 4.22 5.07 5.15

Sharpe 1.32 0.74 0.81 0.79 0.68 0.73 0.76 0.92 0.78 0.94 0.96

Skew 1.17 0.45 0.24 0.34 0.45 0.48 0.10 1.50 0.99 0.38 0.58
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Table 2

Subperiod performance

The table reports the summary statistics for the decile spread portfolios generated by the GP and other models over two sub-

periods. For each model, we report the average monthly return in percentage points, the Newey-west (1987) robust t-statistic,

the annualized Sharpe ratio (Sharpe) and the skewness (Skew). The sample period in Panel A is from 1991:01 to 2003:12, and

in Panel B is from 2004:01 to 2019:12.

GP Ridge Lasso Enet PCR PLS NN1 NN2 NN3 NN4 NN5

Panel A: 1991:01-2003:12

H-L 2.93*** 2.03*** 2.10*** 1.93*** 1.74*** 2.01*** 1.60*** 2.25*** 1.88*** 1.85*** 2.04***

t-stat 6.78 4.59 4.95 4.49 4.28 4.56 4.10 5.45 4.01 4.79 5.80

Sharpe 1.89 1.28 1.38 1.25 1.19 1.27 1.14 1.52 1.12 1.33 1.61

Skew 1.08 0.49 0.24 0.34 0.43 0.55 0.25 1.71 0.94 0.12 0.42

Panel B: 2004:01-2019:12

H-L 0.72*** 0.27 0.34 0.42 0.25 0.24 0.42 0.38 0.53* 0.53** 0.33

t-stat 3.06 0.87 1.10 1.40 0.82 0.80 1.53 1.34 1.77 2.19 1.34

Sharpe 0.77 0.22 0.28 0.35 0.21 0.20 0.38 0.34 0.44 0.55 0.34

Skew -0.02 0.02 -0.04 0.04 0.28 0.01 -0.41 0.78 0.64 0.42 0.48
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Table 3

Spread portfolios controlling for other models

This table reports the summary statistics for the decile spread portfolios of each model controlling

for one of the other models. Panel A provides the results for the GP controlling for one of the

other models, and Panel B provides the results for other models controlling for the GP. The sample

period is from 1991:01 to 2019:12.

Ridge Lasso Enet PCR PLS NN1 NN2 NN3 NN4 NN5

Panel A: GP, controlling for other models

Low 0.66 0.65 0.64 0.60 0.66 0.55 0.61 0.65 0.58 0.55

2 0.96 1.01 0.99 0.95 0.95 0.84 0.83 0.88 0.92 0.86

3 1.10 1.06 1.14 1.07 1.13 0.98 1.09 0.96 0.87 0.88

4 1.11 1.21 0.98 1.41 1.07 0.99 0.99 0.98 1.01 1.08

5 1.15 1.19 1.26 1.09 1.17 1.22 1.16 1.17 1.16 1.10

6 1.04 1.13 1.11 1.13 0.93 1.18 1.11 1.23 1.10 1.07

7 1.55 1.27 1.42 1.32 1.57 1.13 1.29 1.35 1.03 1.23

8 1.20 1.35 1.35 1.12 1.25 1.29 1.37 1.25 1.33 1.29

9 1.43 1.74 1.54 1.53 1.38 1.38 1.35 1.31 1.38 1.28

High 1.28 1.26 1.30 1.30 1.29 1.29 1.23 1.25 1.39 1.40

H-L 0.62*** 0.62*** 0.65*** 0.70*** 0.62*** 0.74*** 0.62*** 0.60*** 0.81*** 0.85***

t-stat 4.27 4.13 4.43 4.47 4.30 4.90 4.09 4.20 5.58 5.70

Panel B: Other models, controlling for GP

Low 0.97 1.04 1.05 1.03 0.96 0.91 0.82 0.61 0.84 0.94

2 1.08 1.17 1.29 1.34 1.27 1.18 0.99 1.13 1.18 1.26

3 1.26 1.23 1.37 1.28 1.25 0.83 1.01 1.22 1.13 1.39

4 1.25 1.33 1.30 1.30 1.16 1.32 0.94 1.18 1.23 1.29

5 1.14 1.33 1.28 1.20 1.23 1.13 1.00 1.21 1.38 1.28

6 1.37 1.27 1.25 1.05 1.37 1.13 0.97 1.32 1.12 1.20

7 1.05 1.06 1.04 1.02 1.08 1.19 0.98 1.13 1.04 1.17

8 1.00 1.02 1.05 1.07 1.02 1.10 0.94 0.98 1.08 1.14

9 0.87 0.87 0.85 0.94 0.87 1.03 0.95 1.00 0.96 0.97

High 0.96 0.96 0.96 0.95 0.96 0.90 0.97 0.88 0.92 0.90

H-L 0.00 -0.08 -0.09 -0.07 0.00 -0.01 0.15 0.27 0.09 -0.04

t-stat -0.01 -0.32 -0.38 -0.31 -0.02 -0.03 0.68 1.15 0.28 -0.11
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Table 4

Performance under information uncertainty

This table reports the βL and βH and their t-stats for the regression:

∆Rt = βLLow
V ol
t−1 + βHHigh

V ol
t−1 + βMKTt + εt,

where ∆Rt is the spread portfolio return of the GP minus the spread of one of the other models,

and LowV olt−1 and HighV olt−1 are dummy variables indicating high- and low-IVOL periods, as classified

based on the median level of the IVOL index, which is defined as the cross-sectional mean of the

IVOL of individual stocks. The last row “Average” reports the statistics average over the 10 models.

The sample period is from 1991:01 to 2019:12.

βL t-stat βH t-stat

Ridge 0.26 0.94 1.05*** 2.75

Lasso 0.15 0.50 1.02** 2.51

Enet 0.10 0.36 1.13*** 2.67

PCR 0.30 1.08 1.28*** 2.80

PLS 0.27 0.96 1.08*** 2.80

NN1 0.23 0.98 1.29*** 3.01

NN2 0.41 1.60 0.57 1.57

NN3 0.36 1.55 0.79* 1.70

NN4 0.35 1.41 0.83** 2.31

NN5 0.50** 2.18 0.73* 1.91

Average 0.31 1.20 1.02 2.43
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Table 5

Comparison with existing factors

This table provides the summary statistics of the GP factor (GPF) and the well known factors. Panel A reports the average

monthly return (Mean) (%), the Newey-west (1987) robust t-statistics, the standard deviation (Std.dev.) (%) the annual Sharpe

ratio (Sharpe), the skewness (Skew), and kurtosis (Kurt). Panel B reports the correlation matrix. The sample period is from

1991:01 to 2016:12.

GPF Mkt SMB HML RMW CMA IA ROE MGMT PERF PEAD FIN

Panel A: Summary statistics

Mean 1.20*** 0.69** 0.21 0.30 0.34* 0.26* 0.28** 0.44*** 0.53*** 0.64** 0.51*** 0.56**

t-stat (6.65) (2.56) (1.30) (1.38) (1.78) (1.86) (2.25) (2.67) (2.80) (2.19) (4.04) (2.07)

Std. dev. 2.37 4.24 3.25 3.04 2.71 2.08 1.99 2.80 2.96 4.47 2.06 4.44

Sharpe 1.75 0.56 0.22 0.34 0.44 0.44 0.49 0.54 0.62 0.50 0.86 0.44

Skew 0.85 -0.67 0.74 0.16 -0.41 0.60 0.32 -0.72 0.46 0.02 0.30 -0.03

Kurt 5.93 4.34 11.17 5.42 12.95 5.43 5.09 7.48 5.53 6.28 7.32 8.36

Panel B: Correlation matrix

GPF 1.00 0.12 0.11 -0.15 -0.11 -0.10 -0.14 -0.06 -0.06 0.08 0.07 -0.13

Mkt 0.12 1.00 0.22 -0.16 -0.46 -0.36 -0.32 -0.45 -0.45 -0.45 -0.12 -0.54

SMB 0.11 0.22 1.00 -0.28 -0.55 -0.14 -0.25 -0.45 -0.42 -0.11 0.11 -0.57

HML -0.15 -0.16 -0.28 1.00 0.38 0.66 0.68 0.14 0.67 -0.23 -0.25 0.64

RMW -0.11 -0.46 -0.55 0.38 1.00 0.25 0.33 0.73 0.50 0.42 -0.08 0.76

CMA -0.10 -0.36 -0.14 0.66 0.25 1.00 0.91 0.14 0.74 0.05 -0.10 0.59

IA -0.14 -0.32 -0.25 0.68 0.33 0.91 1.00 0.20 0.76 0.00 -0.17 0.67

ROE -0.06 -0.45 -0.45 0.14 0.73 0.14 0.20 1.00 0.34 0.66 0.21 0.55

MGMT -0.06 -0.45 -0.42 0.67 0.50 0.74 0.76 0.34 1.00 0.13 -0.08 0.81

PERF 0.08 -0.45 -0.11 -0.23 0.42 0.05 0.00 0.66 0.13 1.00 0.43 0.24

PEAD 0.07 -0.12 0.11 -0.25 -0.08 -0.10 -0.17 0.21 -0.08 0.43 1.00 -0.11

FIN -0.13 -0.54 -0.57 0.64 0.76 0.59 0.67 0.55 0.81 0.24 -0.11 1.00
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Table 6

Spanning test and Sharpe ratio test

Panel A reports six spanning tests of whether the GP factor can be spanned by various factor

models: W , the Wald test under conditional homoskedasticity; We, the Wald test under the IID

elliptical; Wa the Wald test under the conditional heteroskedasticity; J1, the Bekaert-Urias test with

the Errors-inVariables (EIV) adjustment; J2 is the Bekaert-Urias test without the EIV adjustment,

and J3, the DeSantis test. The p-values are in brackets. Panel B reports the results of the Sharpe

ratio test. “Original” reports the squared monthly Sharpe ratios (Sh2) of a model. “With GPF”

reports the squared monthly Sharpe ratios for a model plus the GP factor. “∆(Sh2)” reports the

Sh2 difference of the two models. The bootstrap p-value, for the null hypothesis of no difference,

is reported in brackets, following Ledoit and Wolf (2008) with a repetition number of 4999. The

sample period is from 1991:01 to 2016:12.

Panel A: Spanning test

W We Wa J1 J2 J3

CAPM 895.85*** 451.07*** 645.15*** 69.84*** 69.08*** 452.33***

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

FF-3 217.31*** 114.03*** 155.78*** 63.64*** 71.72*** 137.74***

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

FF-5 95.58*** 59.19*** 73.41 *** 64.19*** 71.74*** 90.15***

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

HXZ-4 102.35*** 61.80*** 80.62*** 62.86*** 71.70*** 84.06***

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

SY-4 68.65*** 46.09*** 63.01*** 42.58*** 47.11*** 53.81***

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

DHS-3 98.73*** 58.60*** 73.41*** 55.08*** 60.63*** 85.44***

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

Panel B: Sh2 in the Sharpe ratio test

Original With GPF ∆(Sh2) p-value

CAPM 0.026 0.265 0.239*** [0.00]

FF-3 0.046 0.304 0.258*** [0.00]

FF-5 0.137 0.390 0.253*** [0.00]

HXZ-4 0.147 0.403 0.256*** [0.00]

SY-4 0.210 0.408 0.198*** [0.00]

DHS-3 0.200 0.438 0.238*** [0.00]
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Table 7

Risk-adjusted returns

The table reports the risk-adjusted returns of the spread portfolios generated by the GP and other methods. Newey-west (1987)

robust t-statistics are reported in parentheses. The sample period is from 1991:01 to 2016:12.

GP Ridge Lasso Enet PCR PLS NN1 NN2 NN3 NN4 NN5

CAPM 1.69*** 0.95*** 1.00*** 0.97*** 0.86** 0.93*** 1.02*** 1.25*** 0.98*** 1.07*** 1.07***

(5.78) (2.94) (2.91) (2.96) (2.36) (2.85) (4.07) (3.90) (3.45) (4.34) (3.60)

FF-3 1.77*** 0.84*** 0.90*** 0.86*** 0.69*** 0.82*** 0.94*** 1.12*** 0.93*** 1.03*** 1.01***

(5.39) (3.50) (3.37) (3.54) (2.77) (3.36) (4.62) (4.49) (4.23) (4.55) (3.86)

FF-5 1.86*** 0.88*** 0.95*** 0.89*** 0.67*** 0.86*** 0.81*** 1.12*** 1.14*** 0.95*** 0.97***

(4.76) (3.53) (3.40) (3.56) (2.65) (3.37) (3.70) (3.83) (4.91) (4.15) (3.86)

HXZ-4 1.80*** 0.75*** 0.77*** 0.73*** 0.55** 0.72*** 0.51** 0.96*** 1.02*** 0.81*** 0.86***

(4.97) (3.01) (2.73) (2.89) (2.13) (2.84) (2.06) (3.84) (4.23) (3.62) (3.08)

SY-4 1.56*** 0.70*** 0.79** 0.72*** 0.55** 0.68** 0.42* 0.87*** 0.98*** 0.89*** 0.70***

(5.33) (2.68) (2.57) (2.69) (2.02) (2.55) (1.67) (3.56) (4.36) (3.73) (2.77)

DHS-3 1.67*** 1.34*** 1.33*** 1.33*** 1.12*** 1.32*** 1.00*** 1.48*** 1.50*** 1.23*** 1.13***

(6.26) (4.59) (4.27) (4.64) (3.63) (4.48) (3.39) (4.93) (5.94) (4.57) (3.62)

CAPM+GPF -0.01 -0.17 -0.05 -0.06 -0.06 -0.19 0.30 0.15 -0.07 0.04 -0.05

(-0.06) (-0.64) (-0.16) (-0.20) (-0.20) (-0.70) (1.43) (0.59) (-0.33) (0.20) (-0.24)
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Table 8

Alternative characteristic set

This table reports the performance of the decile spread portfolios based on the alternative character-

istic set. For each spread portfolio, we report the average monthly return in percentage points, the

Newey-west (1987) robust t-statistic, the annualized Sharpe ratio (Sharpe), the skewness (Skew),

and the maximum drawdown (MDD) in percentage. The sample period is from 2001:01 to 2019:12.

GP Ridge Lasso Enet PCR PLS NN1 NN2 NN3 NN4 NN5

Low 0.12 0.35 0.17 0.23 0.21 0.15 0.11 0.27 0.24 0.24 0.22

2 0.61 0.29 0.37 0.34 0.28 0.30 0.60 0.38 0.51 0.39 0.72

3 0.57 0.78 0.60 0.70 0.76 0.71 0.61 0.83 0.71 0.79 0.64

4 0.72 0.65 0.82 0.77 0.73 0.79 0.86 0.75 0.86 0.78 0.65

5 0.88 0.77 0.88 0.77 0.78 0.73 0.83 0.77 0.77 0.81 0.73

6 1.00 0.95 0.78 0.98 0.78 0.59 0.80 0.92 0.68 0.76 0.75

7 0.80 0.76 0.83 0.78 0.88 1.03 0.71 0.62 0.95 0.67 0.81

8 0.95 0.81 0.65 0.69 0.71 0.80 0.94 0.76 0.91 0.71 1.05

9 1.00 0.83 0.90 0.86 0.87 0.85 0.77 0.83 0.65 0.94 0.71

High 1.11 0.61 0.67 0.62 0.61 0.68 0.65 0.87 0.85 0.80 0.81

H-L 0.99*** 0.26 0.51 0.39 0.40 0.53 0.54 0.61* 0.61* 0.56* 0.58

t-stat 3.29 0.60 1.14 0.89 0.94 1.26 1.45 1.76 1.91 1.66 1.57

Sharpe 0.74 0.13 0.26 0.20 0.21 0.28 0.32 0.40 0.43 0.37 0.35

Skew 0.91 0.40 0.43 0.44 0.48 0.21 0.71 0.55 0.34 0.21 0.55
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Table 9

International evidence

The table reports the performance of the decile spread portfolios in other G7 markets. For each

spread portfolio, we report the average monthly return in percentage points, the Newey-west (1987)

robust t-statistic, the annualized Sharpe ratio (Sharpe). Panel A to F report the statistics for each

of the six markets, whereas Panel G reports the average over the six markets. The sample period

is from 1991:01 to 2019:12.

GP Ridge Lasso Enet PCR PLS NN1 NN2 NN3 NN4 NN5

Panel A: UK

Mean 1.69 1.29 1.34 1.43 1.31 1.29 1.33 1.66 1.30 1.01 1.13

t-stat 5.77 3.74 3.89 4.34 3.69 3.75 4.18 5.23 3.86 2.87 3.63

Sharpe 1.09 0.71 0.73 0.82 0.70 0.71 0.79 0.99 0.73 0.54 0.69

Panel B: Canada

Mean 2.05 1.85 1.79 1.80 1.23 1.79 1.63 1.55 0.90 0.89 0.85

t-stat 4.62 3.43 3.35 3.34 2.39 3.32 3.11 3.32 1.83 1.72 1.65

Sharpe 0.86 0.64 0.63 0.62 0.45 0.62 0.58 0.62 0.34 0.32 0.31

Panel C: Germany

Mean 2.11 1.36 1.60 1.41 1.40 1.39 0.82 0.75 0.65 0.80 1.40

t-stat 6.52 3.54 4.01 3.53 3.62 3.64 2.49 2.03 1.71 2.01 3.95

Sharpe 1.22 0.66 0.75 0.66 0.68 0.68 0.46 0.38 0.32 0.38 0.74

Panel D: Japan

Mean 1.55 1.45 1.60 1.50 1.64 1.43 0.98 1.23 1.14 1.22 1.52

t-stat 6.15 5.11 5.78 5.31 5.15 5.07 4.76 5.47 4.95 5.49 5.41

Sharpe 1.30 1.02 1.13 1.06 1.10 1.01 0.83 1.05 0.90 1.07 1.11

Panel E: Italy

Mean 1.23 1.35 1.09 1.15 1.11 1.24 1.08 0.89 1.34 1.31 1.11

t-stat 3.84 3.70 3.09 3.22 3.09 3.42 3.08 2.55 3.47 3.65 3.01

Sharpe 0.71 0.69 0.57 0.60 0.58 0.64 0.57 0.47 0.64 0.68 0.56

Panel F: France

Mean 2.08 1.66 1.68 1.66 1.75 1.72 1.00 1.37 1.60 1.44 1.21

t-stat 6.77 4.77 5.10 4.92 4.96 4.94 2.91 4.13 4.61 4.25 3.53

Sharpe 1.26 0.89 0.95 0.92 0.92 0.92 0.54 0.77 0.86 0.79 0.66

Panel G: Average statistics over the markets

Mean 1.78 1.49 1.52 1.49 1.40 1.48 1.14 1.24 1.16 1.11 1.20

t-stat 5.61 4.05 4.20 4.11 3.82 4.02 3.42 3.79 3.40 3.33 3.53

Sharpe 1.07 0.77 0.79 0.78 0.74 0.76 0.63 0.71 0.63 0.63 0.68
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Table 10

Performance under alternative parameters

The table reports the annualized Sharpe ratio and average return of the spread portfolios generated by GP under alternative

hyperparameters < Pop,Gen > and M . Panel A, B, and C reports the results for M = 5, 3, and 10, respectively. The training

sample is from 1945:01 to 1980:12. The validation sample is from 1981:01 to 1990:12. The OOS sample is from 1991:01 to 2019:12.

Sharpe ratio Mean return

Train Validation OOS Train Validation OOS

Gen\Pop 100 200 400 100 200 400 100 200 400 100 200 400 100 200 400 100 200 400

Panel A: Average of Top 5 Models

10 2.04 2.30 2.28 1.69 1.68 1.59 1.07 0.93 1.06 1.77 2.15 2.16 1.46 1.67 1.63 1.38 1.37 1.59

20 2.38 2.39 2.44 1.85 1.49 1.68 1.22 0.92 1.14 1.91 2.19 2.24 1.58 1.46 1.62 1.45 1.33 1.66

40 2.85 2.96 2.84 1.86 2.66 2.07 1.11 1.32 1.01 2.29 2.22 2.38 1.68 2.28 1.94 1.56 1.71 1.41

Panel B: Average of Top 3 Models

10 2.07 2.34 2.30 1.81 1.71 1.62 1.15 0.92 1.00 1.72 2.20 2.15 1.49 1.69 1.68 1.37 1.36 1.54

20 2.39 2.40 2.45 1.87 1.48 1.64 1.21 0.90 1.13 1.93 2.19 2.25 1.61 1.44 1.59 1.43 1.29 1.66

40 2.87 2.96 2.85 1.76 2.63 2.05 1.14 1.27 1.02 2.31 2.22 2.37 1.63 2.26 1.92 1.62 1.69 1.41

Panel C: Average of Top 10 Models

10 2.00 2.26 2.24 1.79 1.54 1.55 1.03 0.95 1.06 1.71 2.13 2.13 1.48 1.56 1.59 1.34 1.39 1.54

20 2.36 2.37 2.43 1.85 1.49 1.67 1.21 0.93 1.13 1.90 2.17 2.22 1.58 1.49 1.63 1.44 1.34 1.63

40 2.82 2.96 2.82 1.85 2.68 2.05 1.11 1.27 0.99 2.30 2.21 2.38 1.69 2.28 1.94 1.58 1.68 1.39
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Table 11

Comparison with different objective functions

This table reports the summary statistics for the decile portfolios generated by GP under two

objectives, i.e., to maximize the resulting spread portfolio’s Sharpe ratio (GPSR) and to minimize

the conventional mean squared error (GPMSE). We also report the results for the two methods

controlling for each other. GPωSR reports the results for GPSR controlling for GPMSE . Each month,

the expected return under GPSR is regressed in a cross-section regression on that under GPMSE .

Stocks are then sorted by the resulting residual into ten decile portfolios. GPωMSE reports the

results for GPMSE controlling for GPSR. The sample period is from 1991:01 to 2019:12.

Original Controlling for each other

GPMSE GPSR GPωMSE GPωSR

Low 0.07 0.08 0.66 0.64

2 0.40 0.57 1.31 0.87

3 0.58 0.57 1.29 1.11

4 0.79 0.50 1.26 1.14

5 0.80 0.74 1.22 1.15

6 0.95 1.06 1.25 1.19

7 1.20 1.09 1.05 1.11

8 1.22 1.53 0.97 1.38

9 1.53 1.49 0.92 1.32

High 1.50 1.79 0.92 1.55

H-L 1.44*** 1.71*** 0.27 0.91***

t-stat 5.59 7.12 0.83 5.69

Std. dev. 4.79 4.47 5.72 2.84

Sharpe 1.04 1.32 0.16 1.11

Skew 0.37 1.17 -0.69 0.52

42



Table 12

Simulation: Linear vs nonlinear

This table reports the OOS performances of various models in the linear and nonlinear simulations.

R̂i,t is the fitted return from step 2 in the simulation procedure. The simulation procedure is

discussed in section 5.2.

Annual SR Mean Rt

Linear Nonlinear Linear Nonlinear

R̂i,t 1.33 3.36 1.26 3.49

GP 1.24 3.08 1.08 2.50

Ridge 1.30 2.03 1.24 1.97

Lasso 1.32 2.05 1.27 2.03

Enet 1.32 2.07 1.25 2.01

PCR 1.30 2.03 1.24 1.97

PLS 1.30 2.03 1.25 1.97
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Table 13

Bootstrap with various sample size

This table reports the OOS performances of various models in bootstrap with different sample size.

For “Half”, in each month t, we resample stocks so that the stock number in the simulated data is

only half of the actual stock number. For “Double”, we do the same but double the stock number

in the simulated data each month. Then, based on the simulated data, we estimate GP and NN

models, and examine the spread portfolio in the OOS sample.

Annualied SR Mean Rt

Half Double Half Double

GP 1.01 1.07 1.65 1.61

NN1 0.25 0.74 0.30 1.10

NN2 0.47 0.86 0.58 1.27

NN3 0.46 0.72 0.58 1.04

NN4 0.49 0.62 0.56 0.86

NN5 0.20 0.90 0.20 1.32
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Online Appendix

A. Terminologies in GP

This section introduces the basic flow chart and some terminologies in GP.

A.1 The basic flow chart for GP

The evolution within a single run of the genetic programming can be summarized as follows:

Step 1: Initialization. Create an initial random population and evaluate the fitness of each

individual.

Step 2: Selection. Select parent individuals from the current population, with the selection

probabilities biased in favor of the relative fit individuals.

Step 3: Transformation. Apply crossover and mutation operators to the selected parents to

create offspring.

Step 4: Evaluation. Evaluate the fitness of the offspring.

Step 5: Selection. Selecting the survivor individuals for the next generation.

Step 6: Iteration. Repeat step 2-6 until the termination criterion is satisfied.

Figure A.1 illustrates the basic framework for genetic programming. Some related terminologies

are briefly discussed in the next subsections.

A.2 Program structure and encoding

The solution individuals are computer programs represented as tree structures, which is build

of two types of basic primitives, terminals and functions.

Generally, the terminal node provides the inputs to the GP program, including the input data

used to train the model and some random constants supplied to the GP program. The function

set is a predefined function set which may be application-specific and the range of the functions is

very broad. For example, the arithmetic functions, such as PLUS, MINUS, NULTIPLY, DIVIDE,

and boolean functions, such as AND, OR.
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Figure A.2 shows a example of a tree structured individual. This program has a depth of 2 and

it consists of the two function nodes, “-” and “times”, and three terminal nodes, C1, C2, and C3,

which are the input data. The entire tree can be also interpreted as a function, which computes

C1 - C2 × C3.

A.3 Genetic operators

An initialized population usually perform poorly in fitness. Evolution proceeds by transforming

the initial population by the use of the genetic operators. In machine learning terms, these are the

search operators. The two principal GP genetic operators are crossover and mutation.

The crossover operator combines the genetic material of two parents individuals by swapping a

part of one parent with a part of the other. Tree-based crossover is described graphically in Figure

A.3. and proceeds as follows. First, choose two individuals as parents based on the selection policy.

Second, select a random subtree in each parent. Third, swap the selected subtrees between the two

parents. The resulting individuals are the children.

Mutation operator operates on only one individual. When an individual has been selected for

mutation, the mutation operator select a point randomly and replaces the existing subtree at that

point with a new randomly generated subtree.

A.4 Fitness and selection

Intuitively, the fitness function is a mapping between the genetic individuals and a metric

evaluating its performance in solving the original problem. Fitness function is one of the most

significant ingredient of GP, as it defines the environment for the evolution in the sense that it gives

feedback to the learning algorithm regarding which individual should have a higher probability of

being allowed to create offspring and which individuals should have a higher probability of surviving

in the new generation.

Fitness functions are very problem-specific. In an optimization problem, the fitness function

simply computes the value of the objective function. For example, assume the individual in Figure

A.2 is generated for a regression problem to minimize the mean squared error (MSE). Then, we can

use the sample data to calculate the the mean squared error as the fitness for the program shown

2



in Figure A.2.

B. Definition for the alternative characteristics

Here, we provide the detailed definition for the 15 characteristics of Lewellen (2015).

LogSize−1 Log market value of equity at the end of the prior month;

LogB/M−1: Log book value of equity minus log market value of equity at the end of the prior

month;

Return−2,−12: Stock return from month -12 to month -2;

LogIssues−1,−36 Log growth in split-adjusted shares outstanding from month -36 to month -1;

AccrualsY r−1 Change in non-cash net working capital minus depreciation in the prior fiscal

year,The Cross-section of Expected Stock Returns;

ROAY r−1 Income before extraordinary items divided by average total assets in the prior fiscal

year;

LogAGY r−1 Log growth in total assets in the prior fiscal year,

DY−1,−12: Dividends per share over the prior 12 months divided by price at the end of the prior

month,

LogReturn−13,−36: Log stock return from month -36 to month -13,

LogIssues−1,−12: Log growth in split-adjusted shares outstanding from month -12 to month -1,

Beta−1,−36: Market beta estimated from weekly returns from month -36 to month -1,

StdDev−1,−12: Monthly standard deviation, estimated from daily returns from month -12 to

month -1,

Turnover−1,−12: Average monthly turnover (shares traded/shares outstanding) from month -12

to month -1,

Debt/PriceY r−1: Short-term plus long-term debt divided by market value at the end of the

prior month,

Sales/PriceY r−1: Sales in the prior fiscal year divided by market value at the end of the prior

3



month

C. Further robustness under alternative parameters

Table A.1 compares the GP under alternative parameters with other competitive models. We

carry out the cross-sectional regression to regress the expected returns of model-A on that of model-

B, and then examine the spread portfolios formed on the resulting residuals. Panel A shows that

GP under various parameters still generate strong spread returns after controlling for other models.

On the contrary, in Panel B, none of linear models generate significant returns and only few of the

NN models produce weak returns once controlling for GP. This results confirm that GP under

alternative parameters persistently dominates other models by subsuming their predictability.

D. Detailed results about model volatility

Table A.2 shows that the volatility of GP’s performances decreases with Gen. For example, in

terms of the volatility of the Sharpe ratio of the top 5 models in Panel A, for Pop=200, when Gen

increase from 10 to 40, the training sample volatility decrease from 1.37 to 0.39, and the OOS sample

volatility also decreases from 3.06 to 1.05. This evidence indicates that as the models evolve in the

direction guided by the objective of maximizing Sharpe ratio, they become less-diversified and tend

to converge. Similar patterns are presented for other Panels. From the perspective of evolutionism,

greater volatility indicates a greater species diversity. In other words, a lower volatility indicates

that there is little room for the evolution.
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Figure A.1: A basic framework for genetic programming

This figure illustrates the flow charts for a basic framework of genetic programming: Step 1:

Initialization. Create an initial random population and evaluate the fitness of each individual.

Step 2: Selection. Select parent individuals from the current population, with the selection prob-

abilities biased in favor of the relative fit individuals. Step 3: Transformation. Apply crossover

and mutation operators to the selected parents to create offspring. Step 4: Evaluation. Evaluate

the fitness of the offspring. Step 5: Selection. Selecting the survivor individuals for the next

generation. Step 6: Iteration. Repeat step 2-6 until the termination criterion is satisfied.
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Figure A.2: An example of a tree structures individual

This figure illustrates an example of a tree structured individual. This program has a depth of 2

and it consists of the two function nodes, “-” and “times”, and three terminal nodes, C1, C2, and

C3, which are the input data. This program computes C1 - C2 × C3.
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Figure A.3: An example of crossover operator

This figure illustrates how the crossover operator works.
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Table A.1

Spread portfolios controlling for other models: Under various GP parameters

This table reports the summary statistics for the decile spread portfolios of each model controlling for other

models. Panel A reports the results for GP with various parameters of < Pop,Gen > controlling for other

benchmark models. Each month, the expected return on individual stocks generated by GP is regressed

on that generated by another benchmark model in a cross-section regression. Stocks are then sorted by

the associated residuals into ten decile portfolios. Similarly, Panel B reports the results for other models

controlling for GP. The sample period is from 1991:01 to 2019:12.

< Pop,Gen > Ridge Lasso Enet PCR PLS NN1 NN2 NN3 NN4 NN5

Panel A: GP, controlling for other models

< 100, 10 > 0.72*** 0.74*** 0.74*** 0.76*** 0.72*** 0.83*** 0.65*** 0.69*** 0.77*** 0.79***

(4.11) (4.15) (4.14) (4.23) (4.09) (5.68) (3.95) (4.4) (5) (5.04)

< 100, 20 > 0.31** 0.32** 0.31** 0.32** 0.31** 0.46*** 0.40*** 0.30** 0.53*** 0.6***

(2.22) (2.30) (2.23) (2.28) (2.21) (3.60) (2.98) (2.28) (3.95) (4.3)

< 100, 40 > 0.69*** 0.70*** 0.71*** 0.78*** 0.68*** 0.76*** 0.65*** 0.76*** 0.78*** 0.74***

(3.87) (3.83) (3.93) (4.25) (3.83) (4.28) (3.69) (4.51) (5.18) (4.82)

< 200, 10 > 0.38** 0.40** 0.39** 0.39** 0.37** 0.49*** 0.42*** 0.34** 0.58*** 0.6***

(2.27) (2.32) (2.33) (2.29) (2.22) (2.90) (2.63) (2.10) (3.36) (3.45)

< 200, 20 > 0.39*** 0.42*** 0.40*** 0.39*** 0.39*** 0.54*** 0.41*** 0.42*** 0.59*** 0.68***

(2.53) (2.65) (2.55) (2.49) (2.49) (4.03) (2.99) (2.9) (3.98) (4.32)

< 400, 10 > 0.72*** 0.69*** 0.69*** 0.69*** 0.72*** 0.76*** 0.67*** 0.69*** 0.8*** 0.79***

(3.74) (3.54) (3.63) (3.60) (3.74) (4.68) (4.00) (4.09) (4.83) (4.68)

< 400, 20 > 0.58*** 0.58*** 0.58*** 0.6*** 0.58*** 0.67*** 0.52*** 0.64*** 0.66*** 0.66***

(3.68) (3.82) (3.67) (3.85) (3.64) (4.66) (3.45) (4.20) (4.58) (4.43)

< 400, 40 > 0.52*** 0.64*** 0.59*** 0.56*** 0.53*** 0.65*** 0.50*** 0.44*** 0.54*** 0.56***

(3.62) (4.27) (4.05) (3.86) (3.65) (4.28) (3.10) (3.18) (3.63) (3.74)

Panel B: Other models controlling for GP

< 100, 10 > -0.04 -0.02 -0.10 -0.07 -0.04 -0.09 0.07 0.38** 0.03 -0.14

(-0.17) (-0.08) (-0.42) (-0.3) (-0.17) (-0.47) (0.29) (2.05) (0.08) (-0.38)

< 100, 20 > 0.02 -0.13 -0.13 -0.17 0.02 -0.01 -0.04 0.17 0.00 -0.19

(0.09) (-0.63) (-0.59) (-0.82) (0.09) (-0.12) (-0.24) (1.24) (0.01) (-0.64)

< 100, 40 > 0.13 0.00 0.15 0.12 0.08 0.02 0.21 0.55*** 0.36 0.89**

(0.55) (0.02) (0.59) (0.45) (0.36) (0.1) (0.87) (2.89) (0.99) (1.98)

< 200, 10 > 0.11 0.28 0.27 -0.03 0.10 0.07 0.19 0.53*** 0.39 0.12

(0.41) (0.97) (0.99) (-0.12) (0.36) (0.38) (0.87) (2.6) (1.04) (0.3)

< 200, 20 > -0.04 -0.05 -0.05 -0.07 -0.01 -0.06 0.12 0.18 -0.39 -0.66*

(-0.17) (-0.21) (-0.2) (-0.3) (-0.07) (-0.47) (0.77) (1.23) (-1.3) (-1.75)

< 400, 10 > -0.05 -0.04 -0.07 -0.24 -0.08 -0.03 0.11 0.29 0.12 0.06

(-0.2) (-0.13) (-0.29) (-0.98) (-0.3) (-0.13) (0.5) (1.55) (0.34) (0.16)

< 400, 20 > -0.02 0.03 -0.12 -0.24 -0.02 -0.04 0.08 0.43** 0.35 0.24

(-0.1) (0.11) (-0.46) (-0.92) (-0.08) (-0.25) (0.4) (2.36) (0.97) (0.85)

< 400, 40 > 0.31 0.23 0.27 0.2 0.25 0.14 0.35 0.55*** 0.48 0.46

(1.26) (0.83) (1.03) (0.72) (1.04) (0.69) (1.62) (3.25) (1.37) (1.51)
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Table A.2

Volatility of GP under various parameters

This table reports the volatility of the Sharpe ratio of the spread portfolios generated by GP under

various parameters. For a given < Pop,Gen >, GP generates Pop models (individuals) in the end.

We calculate the volatility of the Sharpe ratios in the training (validation, and OOS) sample for

the top M (M=5,10,50) models with the highest Sharpe ratios in the training sample. We estimate

GP for 5 times, and report the average of the volatility over the five estimations. Panel A, B, and

C reports the results for M= 5,10 and 50, respectively. The training sample is from 1945:01 to

1980:12. The validation sample is from 1981:01 to 1990:12. The OOS sample is from 1991:01 to

2019:12.

Train Val OOS Train Val OOS Train Val OOS

Gen\Pop 100 200 400

Panel A: Volatility of the SR of the top 5 models

10 1.85 3.97 3.11 1.37 3.67 3.06 1.05 6.90 2.56

20 0.54 2.71 1.74 0.47 2.64 1.20 0.56 4.18 1.53

40 0.31 1.19 0.37 0.39 3.14 1.05 0.25 2.85 1.03

Panel B: Volatility of the SR of the top 10 models

10 2.09 7.23 3.42 1.67 6.14 4.21 1.07 5.85 2.74

20 0.76 2.68 1.64 0.47 2.82 1.28 0.67 3.99 1.91

40 0.44 1.63 0.54 0.40 2.71 1.06 0.25 2.21 1.06

Panel C: Volatility of the SR of the top 50 models

10 5.53 9.01 4.96 2.84 6.89 3.94 1.71 5.77 4.17

20 2.08 3.88 3.00 1.99 3.96 2.72 0.66 4.35 1.90

40 0.90 2.05 0.83 0.43 2.17 1.38 0.50 2.21 1.68
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