新闻中心NEWS

返回首页

讲座:Safeguarding privacy in dynamic decision making

发布者:人力资源办公室    发布时间:2019-12-30

题 目:Safeguarding privacy in dynamic decision making

嘉 宾:Kuang Xu, Associate Professor, Stanford University

主持人:郑欢 教授 上海交通大学安泰经济与管理学院

时 间:2020年01月07日(周二) 10:00-11:30

地 点:上海交通大学 徐汇校区包图 A305

内容简介:

The increasing ubiquity of large-scale infrastructures for surveillance and data analysis has made understanding the impact of privacy a pressing priority. We propose a framework for studying a fundamental cost vs. privacy tradeoff in dynamic decision-making problems. The central question is: how can a decision maker take actions that are efficient for her goal, while simultaneously ensuring these actions do not inadvertently reveal her private information, even when observed and analyzed by a powerful adversary? We will examine two well-known decision problems (path planning and online learning), and in both cases establish sharp, information-theoretic complexity vs. privacy tradeoff. As a by-product, our analysis also leads to simple yet provably efficient algorithms for both the decision maker and eavesdropping adversary. Based in part on joint work with Mine Su Erturk (Stanford GSB), John N. Tsitsiklis (MIT LIDS) and Zhi Xu (MIT LIDS).

演讲人简介

Kuang Xu was born in Suzhou, China. He is an Associate Professor of Operations, Information and Technology at the Stanford Graduate School of Business, Stanford University. He received the B.S. degree in Electrical Engineering (2009) from the University of Illinois at Urbana-Champaign, Urbana, Illinois, USA, and the Ph.D. degree in Electrical Engineering and Computer Science (2014) from the Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. His research interests lie in the fields of applied probability theory, optimization, and operations research, seeking to understand fundamental properties and design principles of large-scale stochastic systems, with applications in queueing networks, healthcare, privacy and statistical learning theory. He has received several awards including a First Place in INFORMS George E. Nicholson Student Paper Competition, a Best Paper Award, as well as a Kenneth C. Sevcik Outstanding Student Paper Award from ACM SIGMETRICS. 

欢迎广大师生参加!