新闻中心NEWS

返回首页

讲座:Flexible Dependence Modeling Using Convex Combinations of Different Types of Weight Structures

发布者:经济系    发布时间:2017-06-15

经济学系列学术讲座

题 目:Flexible Dependence Modeling Using Convex Combinations of Different Types of Weight Structures

演讲人:Nicolas Debarsy, CNRS research fellow, Université de Lille Sciences et Technologies

主持人:张国雄  博士   上海交通大学安泰经济与管理学院经济系

 间:2017年6月19日 (周一 ) 14:30-16:00

 点:上海交通大学  徐汇校区新上院S202室


演讲内容简介:

There is a great deal of literature regarding use of non-spatial weight matrices or combinations of spatial and non-spatial weight structures. We explore alternative approaches for constructing convex combinations of different types of dependence between observations. Pace and LeSage (2002) as well as Hazır, LeSage and Autant-Bernard (2016) use convex combinations of different weight matrices to form a single weight matrix that can be used in conventional spatial regression estimation and inference. We explore issues that arise in producing estimates and inferences from these more general cross-sectional regression relationships in a Bayesian framework. We propose two procedures to estimate such models and assess their finite sample properties through Monte Carlo experiments. Lastly, we apply our methodology to CEOs’ salaries of Texan nursing homes. Literature has shown that CEOs’ salaries were not fixed independently between nursing homes. We consider 2 measures of similarity between them, namely geographic and peer proximity. We find that the peer effect is relatively more relevant (87%) to explain mimicking behavior in the fixing of CEOs’ wage than geographic proximity (13%), the latter remaining nevertheless significant.

演讲人简介:

Dr. Debarsy is a CNRS research fellow at Université de Lille Sciences et Technologies in France. He obtained his Ph.D. in Economics from University of Namur in 2011. His research area includes spatial econometrics and regional economics. His research has appeared on journals such as Journal of Econometrics.

 

欢迎感兴趣的老师和同学们参加!